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Supplementary Text

S1 Mesh

We propose two classes of ori-kiri assemblages with RS meshes and UV meshes, respectively. The

abbreviation “RS” denotes “rotating square”, i.e., the classical kirigami pattern exhibiting auxetic

properties by the rotation of square cut units. The abbreviation “UV” represents “UV mapping”,

a texture mapping technique that can unwrap images on a sphere to a planar surface. As shown

in Figure S1A, the cube with an RS mesh has six faces of 4 × 4 squares. Each square is divided

into two triangles by a diagonal crease. The square can fold along its crease and rotate relative to

its neighbor square at the common vertex. The RS mesh can also be made on curved surfaces. As

shown in Figure S1B, the sphere with an RS mesh has six faces as well, while the squares have

been generalized to skew quadrilaterals to approximate the curved surface. In addition, we can

also approximate a sphere with a UV mesh. As shown in Figure S1C, the standard UV mesh is

composed of trapezoids except for triangles at the poles. Similar to the RS mesh, each trapezoid is

divided by a diagonal crease.

Both the RS meshes and the UV meshes have deployed forms with open slits. As shown in Figure

S1D, the cube with an RS mesh has six deployed faces. The green lines indicate discontinuous

intersections across which the panels are not connected, while the red lines represent continuous

intersections where the panels are connected at their common vertices. Figures S2A and S2B

demonstrate all the continuous and discontinuous intersections on an RS mesh. Figure S1E shows

the continuous and discontinuous intersections of a deployed RS mesh on a sphere. Figure S1F

shows a torus with a deployed UV mesh where the trapezoids become skew quadrilaterals. The

green line at the inner circumference of the torus is a discontinuous intersection where the panels

on opposite sides are not connected with each other.

S2 Parametrization

Cube with RS mesh. Following the notations illustrated in Figure S2C, we can index the six faces

of the cube by 1 to 6, and the eight vertices by 1 to 8. Figure S4A shows a cube in a Cartesian

coordinate system. We denote the eight vertices by 𝑉1 to 𝑉8. Given the edge length of the cube 2𝐿,



the positions of 𝑉1 to 𝑉8 can be written as

𝑉1 = (−𝐿,−𝐿,−𝐿), 𝑉2 = (𝐿,−𝐿,−𝐿), 𝑉3 = (𝐿, 𝐿,−𝐿), 𝑉4 = (−𝐿, 𝐿,−𝐿),

𝑉5 = (−𝐿,−𝐿, 𝐿), 𝑉6 = (𝐿,−𝐿, 𝐿), 𝑉7 = (𝐿, 𝐿, 𝐿), 𝑉8 = (−𝐿, 𝐿, 𝐿).
(S1)

We additionally introduce local indices of the four vertices on each face, as shown in Figure S2D.

We denote the locally-indexed vertices on the 𝑘-th face by 𝑉𝑘1 to 𝑉𝑘4 for 𝑘 = 1, 2, ..., 6. The

relationship between the global and local indices is given by

face 1: 𝑉11 = 𝑉1, 𝑉12 = 𝑉2, 𝑉13 = 𝑉6, 𝑉14 = 𝑉5;

face 2: 𝑉21 = 𝑉2, 𝑉22 = 𝑉3, 𝑉23 = 𝑉7, 𝑉24 = 𝑉6;

face 3: 𝑉31 = 𝑉3, 𝑉32 = 𝑉4, 𝑉33 = 𝑉8, 𝑉34 = 𝑉7;

face 4: 𝑉41 = 𝑉4, 𝑉42 = 𝑉1, 𝑉43 = 𝑉5, 𝑉44 = 𝑉8;

face 5: 𝑉51 = 𝑉4, 𝑉52 = 𝑉3, 𝑉53 = 𝑉2, 𝑉54 = 𝑉1;

face 6: 𝑉61 = 𝑉5, 𝑉62 = 𝑉6, 𝑉63 = 𝑉7, 𝑉64 = 𝑉8;

(S2)

For the 𝑘-th face, we refer to the segment 𝑉𝑘1𝑉𝑘4 as the left boundary, and the segment 𝑉𝑘1𝑉𝑘2 as

the bottom boundary. On each face, the position of the point 𝑃 can be determined by its distance

away from the left and bottom boundaries, denoted by 𝑢 and 𝑣, respectively. We scale 𝑢 and 𝑣 by

𝑝 =
𝑢

2𝐿
, 𝑞 =

𝑣

2𝐿
. (S3)

As a result, the parameters 𝑝 and 𝑞 are within the interval [0, 1].

We denote the origin point of the Cartesian coordinate system by 𝑂. Naturally, the coordinates

of the origin is 𝑂 = (0, 0, 0). Supposing the coordinates of the point 𝑃 is (𝑥, 𝑦, 𝑧), we have
−−→
𝑂𝑃 = (𝑥, 𝑦, 𝑧). For the point 𝑃 on the 𝑘-th face, the parameters 𝑝 and 𝑞 can be calculated by

𝑝 =

−−−−−→
𝑉𝑘1𝑉𝑘2 · (

−−→
𝑂𝑃 −

−−−−→
𝑂𝑉𝑘1)

4𝐿2 , 𝑞 =

−−−−−→
𝑉𝑘1𝑉𝑘4 · (

−−→
𝑂𝑃 −

−−−−→
𝑂𝑉𝑘1)

4𝐿2 . (S4)

Inversely, we can use the parameters 𝑝 and 𝑞 to locate the point 𝑃 by

−−→
𝑂𝑃 =

−−−−→
𝑂𝑉𝑘1 + 𝑝

−−−−−→
𝑉𝑘1𝑉𝑘2 + 𝑞

−−−−−→
𝑉𝑘1𝑉𝑘4, (S5)

where 𝑝, 𝑞 ∈ [0, 1]. Equation (S4) maps (𝑥, 𝑦, 𝑧) to (𝑝, 𝑞), while Equation (S5) maps (𝑝, 𝑞) to

(𝑥, 𝑦, 𝑧). We define the following functions

(𝑝, 𝑞) = fcube-RS(𝑥, 𝑦, 𝑧; 𝑘, 𝐿), (S6)



(𝑥, 𝑦, 𝑧) = gcube-RS(𝑝, 𝑞; 𝑘, 𝐿). (S7)

The function fcube-RS represents the map given by Equation (S4). The function gcube-RS represents

the map given by Equation (S5).

Sphere with RS mesh. Figure S4B shows a sphere with an RS mesh in a Cartesian coordinate

system. The sphere is divided into six spherical square faces with eight vertices. We follow the

same index rules as those for the cube (Figures S2C and S2D). Given the radius 𝑅, the positions of

𝑉1 to 𝑉8 are written as

𝑉1 = (−𝑅,−𝑅,−𝑅)/
√

3, 𝑉2 = (𝑅,−𝑅,−𝑅)/
√

3,

𝑉3 = (𝑅, 𝑅,−𝑅)/
√

3, 𝑉4 = (−𝑅, 𝑅,−𝑅)/
√

3,

𝑉5 = (−𝑅,−𝑅, 𝑅)/
√

3, 𝑉6 = (𝑅,−𝑅, 𝑅)/
√

3,

𝑉7 = (𝑅, 𝑅, 𝑅)/
√

3, 𝑉8 = (−𝑅, 𝑅, 𝑅)/
√

3.

(S8)

The local-global index relationship follows Equation (S2) again. For the 𝑘-th face, the left boundary

is the great-circle arc (or equivalently, geodesic line) connecting vertices𝑉𝑘1 and𝑉𝑘4, and the bottom

boundary is the great-circle arc connecting 𝑉𝑘1 and 𝑉𝑘2. We can locate a point on each face by its

relative position away from the left and bottom boundaries. For example, in Figure S4B left, the

point 𝑃 falls on face 1. The left boundary can be extended to the two antipodal points on the 𝑧 axis

and form a half great circle. We can find another half great circle ending at this pair of antipodal

points but passing through the point 𝑃. These two half great circles bound a spherical lune of a

dihedral angle 𝛼. We can follow the same procedure to obtain the other spherical lune intersecting

with the bottom boundary. The resulting dihedral angle is denoted by 𝛽. The dihedral angles 𝛼 and

𝛽 determine the position of the point 𝑃 on the face. We map 𝛼 and 𝛽 onto the interval [0, 1] by

𝑝 =
2𝛼
𝜋
, 𝑞 =

2𝛽
𝜋
. (S9)

In general, for a point on the 𝑘-th face, we can obtain the parameters 𝑝 and 𝑞 based on the left and

bottom boundaries of the face. We denote the origin point of the coordinate system by 𝑂 = (0, 0, 0),

and the coordinate of the point 𝑃 by (𝑥, 𝑦, 𝑧). Then, we have
−−→
𝑂𝑃 = (𝑥, 𝑦, 𝑧). We aim to express

the parametrization for the six faces with a unified formulation. To this end, we take the 2nd face

(i.e., the one intersecting with the positive semi 𝑥 axis) as a reference face and rotate the points

on the other faces to the 2nd face, around the spherical center (i.e., the origin of the coordinate



system 𝑂). Specifically, we rotate the boundaries of a face along with the target point and preserve

their relative locations, such that the corresponding boundaries (say, the left, bottom, right, and top

boundaries) of this face coincide with the corresponding boundaries on the 2nd face. We suppose

the point 𝑃 on the 𝑘-th face moves to the point 𝑃 on the 2nd face after the rotation. We denote the

coordinates of 𝑃 by (𝑥̃, 𝑦̃, 𝑧̃). The rotations from the points 𝑃 to 𝑃 can be expressed as

(𝑥̃, 𝑦̃, 𝑧̃) =



(𝑥, 𝑦, 𝑧) · 𝑅𝑧

(
𝜋
2
)

if 𝑘 = 1,

(𝑥, 𝑦, 𝑧) if 𝑘 = 2,

(𝑥, 𝑦, 𝑧) · 𝑅𝑧

(
− 𝜋

2
)

if 𝑘 = 3,

(𝑥, 𝑦, 𝑧) · 𝑅𝑧 (𝜋) if 𝑘 = 4,

(𝑥, 𝑦, 𝑧) · 𝑅𝑥

(
− 𝜋

2
)
𝑅𝑧

(
𝜋
2
)

if 𝑘 = 5,

(𝑥, 𝑦, 𝑧) · 𝑅𝑥

(
𝜋
2
)
𝑅𝑧

(
𝜋
2
)

if 𝑘 = 6,

(S10)

in which 𝑅𝑥 (𝑡) and 𝑅𝑧 (𝑡) are the rotations around the 𝑥 axis and the 𝑧 axis, respectively. The

expressions of 𝑅𝑥 (𝑡) and 𝑅𝑧 (𝑡) can be written as

𝑅𝑥 (𝑡) =


1 0 0

0 cos 𝑡 sin 𝑡

0 − sin 𝑡 cos 𝑡


, 𝑅𝑧 (𝑡) =


cos 𝑡 sin 𝑡 0

− sin 𝑡 cos 𝑡 0

0 0 1


. (S11)

After the rotations, the dihedral angles 𝛼 and 𝛽 remain unchanged:

𝛼̃ = 𝛼, 𝛽 = 𝛽. (S12)

On the reference face, to parameterize the point 𝑃, first, we compress the Cartesian coordinates

(𝑥̃, 𝑦̃, 𝑧̃) to the azimuth angle 𝜃̃ and the elevation angle 𝜑 by

𝜃̃ = atan2( 𝑦̃, 𝑥̃), 𝜑 = atan2( 𝑧̃,
√︃
𝑥̃2 + 𝑦̃2), (S13)



where the function atan2 is the four-quadrant inverse tangent defined as

atan2(𝑦, 𝑥) =



arctan
( 𝑦
𝑥

)
if 𝑥 > 0,

arctan
( 𝑦
𝑥

)
+ 𝜋 if 𝑥 < 0 and 𝑦 ≥ 0,

arctan
( 𝑦
𝑥

)
− 𝜋 if 𝑥 < 0 and 𝑦 < 0,

+ 𝜋
2 if 𝑥 = 0 and 𝑦 > 0,

− 𝜋
2 if 𝑥 = 0 and 𝑦 < 0,

undefined if 𝑥 = 0 and 𝑦 = 0.

(S14)

Second, we convert the azimuth angle 𝜃̃ and the elevation angle 𝜑 to the dihedral angles 𝛼̃ and 𝛽,

scaling 𝛼̃ and 𝛽 with Equation (S9), and obtain the parameters 𝑝 and 𝑞. The final expressions of 𝑝

and 𝑞 become

𝑝 =
1
2
+ 2
𝜋
𝜃̃, 𝑞 =

1
2
+ 2
𝜋

arctan
(
tan 𝜑

cos 𝜃̃

)
. (S15)

Inversely, we can obtain the spatial location of a point with the parameters 𝑝 and 𝑞. First, we

calculate the elevation angle 𝜃̃ and the azimuth angle 𝜑 by

𝜃̃ =
𝜋

2
𝑝 − 𝜋

4
, 𝜑 = arctan

[
tan

(𝜋
2
𝑞 − 𝜋

4

)
cos 𝜃̃

]
, (S16)

where 𝑝, 𝑞 ∈ [0, 1]. Second, we calculate (𝑥̃, 𝑦̃, 𝑧̃) by

𝑥̃ = 𝑅 cos 𝜑 cos 𝜃̃, 𝑦̃ = 𝑅 cos 𝜑 sin 𝜃̃, 𝑧̃ = 𝑅 sin 𝜑. (S17)

Finally, we rotate the point 𝑃 from the reference face to the face that the point 𝑃 belongs to. The

rotations can be expressed as

(𝑥, 𝑦, 𝑧) =



(𝑥̃, 𝑦̃, 𝑧̃) · 𝑅𝑧

(
− 𝜋

2
)

if 𝑘 = 1,

(𝑥̃, 𝑦̃, 𝑧̃) if 𝑘 = 2,

(𝑥̃, 𝑦̃, 𝑧̃) · 𝑅𝑧

(
𝜋
2
)

if 𝑘 = 3,

(𝑥̃, 𝑦̃, 𝑧̃) · 𝑅𝑧 (𝜋) if 𝑘 = 4,

(𝑥̃, 𝑦̃, 𝑧̃) · 𝑅𝑧

(
− 𝜋

2
)
𝑅𝑥

(
𝜋
2
)

if 𝑘 = 5,

(𝑥̃, 𝑦̃, 𝑧̃) · 𝑅𝑧

(
− 𝜋

2
)
𝑅𝑥

(
− 𝜋

2
)

if 𝑘 = 6.

(S18)



Equations (S10)–(S15) map (𝑥, 𝑦, 𝑧) to (𝑝, 𝑞), while Equations (S16)–(S18) map (𝑝, 𝑞) to (𝑥, 𝑦, 𝑧).

We define the following functions

(𝑝, 𝑞) = fsphere-RS(𝑥, 𝑦, 𝑧; 𝑘), (S19)

(𝑥, 𝑦, 𝑧) = gsphere-RS(𝑝, 𝑞; 𝑘, 𝑅). (S20)

The function fsphere-RS represents the map given by Equations (S10)–(S15). The function gsphere-RS

represents the map given by Equations (S16)–(S18).

Sphere with UV mesh. Figure S4C shows a sphere with UV mesh in a Cartesian coordinate system.

We can simply use the elevation angle 𝜃 and the azimuth angle 𝜑 to determine the position of the

point 𝑃 on the sphere. Here, we stipulate that the direction of the negative semi 𝑥 axis corresponds

to zero azimuth angle 𝜃 = 0. Then we scale 𝜃 and 𝜑 onto the interval [0, 1] by

𝑝 =
𝜃

2𝜋
, 𝑞 =

𝜑

𝜋
+ 1

2
. (S21)

We denote the coordinates of the point 𝑃 by (𝑥, 𝑦, 𝑧). Then, 𝑝 and 𝑞 can be calculated by

𝑝 =
1

2𝜋
atan2(𝑦, 𝑥) + 1

2
, 𝑞 =

1
𝜋

atan2(𝑧,
√︃
𝑥2 + 𝑦2) + 1

2
, (S22)

where the function atan2 is defined by Equation (S14). Inversely, we can use 𝑝 and 𝑞 to locate the

point 𝑃 by

𝑥 = −𝑅 sin(𝜋𝑞) cos(2𝜋𝑝), 𝑦 = −𝑅 sin(𝜋𝑞) sin(2𝜋𝑝), 𝑧 = −𝑅 cos(𝜋𝑞), (S23)

where 𝑝, 𝑞 ∈ [0, 1] and 𝑅 is the radius of the sphere. Equation (S22) maps (𝑥, 𝑦, 𝑧) to (𝑝, 𝑞), while

Equation (S23) maps (𝑝, 𝑞) to (𝑥, 𝑦, 𝑧). We define the following functions

(𝑝, 𝑞) = fsphere-UV(𝑥, 𝑦, 𝑧), (S24)

(𝑥, 𝑦, 𝑧) = gsphere-UV(𝑝, 𝑞; 𝑅). (S25)

The function fsphere-UV represents the map given by Equation (S22). The function gsphere-UV repre-

sents the map given by Equation (S23).

Torus with UV mesh. Figure S4D shows a torus with a UV mesh (left) and its section view (right)

in a Cartesian coordinate system. We denote the major radius of the torus by 𝑅 and the minor radius



by 𝑟 . The position of a point 𝑃 on the torus is determined by two orientation angles 𝜃 and 𝜑. The

toroidal angle 𝜃 represents the orientation in the toroidal direction (around the circle of radius 𝑅)

while the poloidal angle 𝜑 represents the orientation in the poloidal direction (around the circle

of radius 𝑟). We stipulate that the zero toroidal angle (𝜃 = 0) corresponds to the direction of the

negative semi 𝑥 axis, and the zero poloidal angle (𝜑 = 0) corresponds to the direction pointing to

the centroid of the torus. Both the angles 𝜃 and 𝜑 are within the interval [0, 2𝜋], satisfying that

𝜃 = 0 or 2𝜋 represents the same position in the toroidal direction, and 𝜑 = 0 or 2𝜋 represents the

same position in the poloidal direction. We scale 𝜃 and 𝜑 onto the interval [0, 1] by

𝑝 =
𝜃

2𝜋
, 𝑞 =

𝜑

2𝜋
. (S26)

We denote the coordinates of the point 𝑃 by (𝑥, 𝑦, 𝑧). The parameters 𝑝 and 𝑞 can be calculated by

𝑝 =
1

2𝜋
atan2(𝑦, 𝑥) + 1

2
, 𝑞 =

1
2𝜋

atan2(𝑧,
√︃
𝑥2 + 𝑦2 − 𝑅) + 1

2
, (S27)

where the function atan2 is defined by Equation (S14). Inversely, we can use 𝑝 and 𝑞 to locate the

point 𝑃 by

𝑥 = −[𝑅 − 𝑟 cos(2𝜋𝑞)] cos(2𝜋𝑝), 𝑦 = −[𝑅 − 𝑟 cos(2𝜋𝑞)] sin(2𝜋𝑝), 𝑧 = −𝑟 sin(2𝜋𝑞), (S28)

where 𝑝, 𝑞 ∈ [0, 1]. Equation (S27) maps (𝑥, 𝑦, 𝑧) to (𝑝, 𝑞), while Equation (S28) maps (𝑝, 𝑞) to

(𝑥, 𝑦, 𝑧). We define the following functions

(𝑝, 𝑞) = ftorus-UV(𝑥, 𝑦, 𝑧; 𝑅), (S29)

(𝑥, 𝑦, 𝑧) = gtorus-UV(𝑝, 𝑞; 𝑅, 𝑟). (S30)

The function ftorus-UV represents the map given by Equation (S27). The function gtorus-UV represents

the map given by Equation (S28).

S3 Regular patterns

Compact RS mesh. For each of the six faces of an RS mesh, (𝑝, 𝑞) form another mesh in a square

region [0, 1] × [0, 1] in the parameter space. We refer to this mesh in the parameter space as

RS-parameter mesh. Figure S5A shows a 4×4 regular RS-parameter mesh, which can parameterize

one face of an RS mesh. We assign indices to the square cells and nodes on the RS-parameter mesh,



as shown in Figure S5D. Supposing the RS-parameter mesh corresponds to the 𝑘-th face of the RS

mesh, we use the triple (𝑖, 𝑗 , 𝑘) to index the square cell on the 𝑖-th column and the 𝑗-th row. For each

square cell, we index its four nodes counterclockwise starting from the lower-left corner by 1 to 4.

In general, for the square cell (𝑖, 𝑗 , 𝑘) on the 𝑁 × 𝑁 RS-parameter mesh, we denote the coordinates

of the 𝑙-th node by (𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙), in which 𝑖, 𝑗 = 1, 2, ..., 𝑁; 𝑘 = 1, 2, ..., 6; 𝑙 = 1, 2, 3, 4. In

this work, for the simplicity of formulation, we restrict 𝑁 to be a positive even integer. Then the

coordinates (𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙) can be calculated as

𝑝𝑖, 𝑗 ,𝑘,1 = (𝑖 − 1)/𝑁, 𝑝𝑖, 𝑗 ,𝑘,2 = 𝑖/𝑁, 𝑝𝑖, 𝑗 ,𝑘,3 = 𝑖/𝑁, 𝑝𝑖, 𝑗 ,𝑘,4 = (𝑖 − 1)/𝑁,

𝑞𝑖, 𝑗 ,𝑘,1 = ( 𝑗 − 1)/𝑁, 𝑞𝑖, 𝑗 ,𝑘,2 = ( 𝑗 − 1)/𝑁, 𝑞𝑖, 𝑗 ,𝑘,3 = 𝑗/𝑁, 𝑞𝑖, 𝑗 ,𝑘,4 = 𝑗/𝑁.

(S31)

By substituting Equation (S31) into Equation (S7), we can map the parameters (𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙) to

the spatial vertex positions, denoted by (𝑥𝑖, 𝑗 ,𝑘,𝑙 , 𝑦𝑖, 𝑗 ,𝑘,𝑙 , 𝑧𝑖, 𝑗 ,𝑘,𝑙). The map can be expressed by

(𝑥𝑖, 𝑗 ,𝑘,𝑙 , 𝑦𝑖, 𝑗 ,𝑘,𝑙 , 𝑧𝑖, 𝑗 ,𝑘,𝑙) = gcube-RS(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙 ; 𝑘, 𝐿). (S32)

Through this map, the panels and vertices of the RS mesh inherit the indices 𝑖, 𝑗 , 𝑘, 𝑙 of the cells

and nodes of the RS-parameter mesh. In addition, to express the assignment of the creases, we

define the bi-value parameter

𝑐𝑖, 𝑗 ,𝑘 =


+1, if the crease connects vertices 1 and 3,

−1, if the crease connects vertices 2 and 4,
(S33)

where the triple (𝑖, 𝑗 , 𝑘) represents the panel to which the indices is assigned. Figure S3A shows an

RS-parameter mesh which parametrizes all the six faces of an RS mesh. By setting 𝑐𝑖, 𝑗 ,𝑘 = +1 for

all 𝑖, 𝑗 , 𝑘 , we can obtain a compact cube with a uniform crease assignment, as shown in Figure S3B.

Furthermore, we can substitute Equation (S31) into Equation (S20) and obtain the vertex positions

(𝑥𝑖, 𝑗 ,𝑘,𝑙 , 𝑦𝑖, 𝑗 ,𝑘,𝑙 , 𝑧𝑖, 𝑗 ,𝑘,𝑙) on a sphere:

(𝑥𝑖, 𝑗 ,𝑘,𝑙 , 𝑦𝑖, 𝑗 ,𝑘,𝑙 , 𝑧𝑖, 𝑗 ,𝑘,𝑙) = gsphere-RS(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙 ; 𝑘, 𝑅). (S34)

Figure S3C shows the compact spherical RS mesh with a uniform crease assignment. The cube in

Figure S3B and the sphere in Figure S3C share the same RS-parameter mesh in Figure S3A.

Deployed RS mesh. Figure S5B shows the RS-parameter mesh composed of 4× 4 obliquely placed

squares in the unit square region in the parameter space. The rotation angle 𝜉 determines the nodal



coordinates of the square cells. As shown in Figure S5C, for an 𝑁 × 𝑁 RS-parameter mesh, each

obliquely placed square cell occupies a larger square region of side length 1/𝑁 which is divided

into two parts of lengths 𝑡1 and 𝑡2. We have 𝑡1 + 𝑡2 = 1/𝑁 and 𝑡1/𝑡2 = tan(𝜉/2). Therefore we can

solve 𝑡1 and 𝑡2 by

𝑡1 =
1
𝑁

tan(𝜉/2)
1 + tan(𝜉/2) , 𝑡2 =

1
𝑁

1
1 + tan(𝜉/2) . (S35)

Then we can calculate the coordinates of the nodes in the deployed RS mesh. We follow the same

index rules that are applied to the compact RS-parameter mesh. For the obliquely placed square

cell (𝑖, 𝑗 , 𝑘) on the 𝑁 × 𝑁 RS-parameter mesh, the coordinates of the 𝑙-th node (𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙) can

be calculated by

for even 𝑖 + 𝑗 : 𝑝𝑖, 𝑗 ,𝑘,1 = (𝑖 − 1)/𝑁, 𝑞𝑖, 𝑗 ,𝑘,1 = ( 𝑗 − 1)/𝑁 + 𝑡1,

𝑝𝑖, 𝑗 ,𝑘,2 = 𝑖/𝑁 − 𝑡1, 𝑞𝑖, 𝑗 ,𝑘,2 = ( 𝑗 − 1)/𝑁,

𝑝𝑖, 𝑗 ,𝑘,3 = 𝑖/𝑁, 𝑞𝑖, 𝑗 ,𝑘,3 = 𝑗/𝑁 − 𝑡1,

𝑝𝑖, 𝑗 ,𝑘,4 = (𝑖 − 1)/𝑁 + 𝑡1, 𝑞𝑖, 𝑗 ,𝑘,4 = 𝑗/𝑁;

for odd 𝑖 + 𝑗 : 𝑝𝑖, 𝑗 ,𝑘,1 = (𝑖 − 1)/𝑁 + 𝑡1, 𝑞𝑖, 𝑗 ,𝑘,1 = ( 𝑗 − 1)/𝑁,

𝑝𝑖, 𝑗 ,𝑘,2 = 𝑖/𝑁, 𝑞𝑖, 𝑗 ,𝑘,2 = ( 𝑗 − 1)/𝑁 + 𝑡1,

𝑝𝑖, 𝑗 ,𝑘,3 = 𝑖/𝑁 − 𝑡1, 𝑞𝑖, 𝑗 ,𝑘,3 = 𝑗/𝑁,

𝑝𝑖, 𝑗 ,𝑘,4 = (𝑖 − 1)/𝑁, 𝑞𝑖, 𝑗 ,𝑘,4 = 𝑗/𝑁 − 𝑡1.

(S36)

We can specify different values for 𝜉 and obtain various deployed RS-parameter meshes. First, if we

specify 𝜉 = 0, the deployed RS-parameter mesh degenerates to the compact RS-parameter mesh.

Second, specifying 𝜉 = 𝜋/3 leads to the RS-parameter mesh shown in Figure S3D. In this case,

we substitute Equation (S36) into Equation (S32) and generate the cubic RS mesh in Figure S3E.

Also, we can substitute Equation (S36) into Equation (S34) and obtain the spherical RS mesh in

Figure S3F. Third, specifying 𝜉 = 𝜋/2 leads to the RS-parameter mesh in Figure S3G. In this case,

we substitute Equation (S36) into Equation (S32) and Equation (S34), and then we can generate

the cubic RS mesh as shown in Figure S3H and the spherical RS mesh as shown in Figure S3I,

respectively.

Compact UV mesh. We refer to the mesh in the parameter space of a UV mesh as UV-parameter

mesh. Figure S16A shows an 8 × 4 regular and compact UV-parameter mesh on the square region



[0, 1] × [0, 1]. We assign indices to the cells and nodes on the compact UV-parameter mesh, as

shown in Figure S16D. The tuple (𝑖, 𝑗) is used to index the rectangle or triangle on the 𝑖-th column

and the 𝑗-th row. For each rectangle, we index its four nodes counterclockwise starting from the

lower-left corner by 1 to 4. For each triangle, we assign two indices to the nodes on the top or bottom

boundary of the UV-parameter mesh, so that the indexing is consistent between the rectangles and

triangles. As a result, the triangles can be considered as degenerate quadrilaterals in the sense that a

double-indexed node of a triangle represents two coinciding nodes of a quadrilateral. Generally, an

𝑀×𝑁 UV-parameter mesh consists of 𝑀×𝑁 quadrilaterals (including 𝑀×2 degenerate triangles).

We restrict 𝑀 and 𝑁 to be positive even integers. For the cell (𝑖, 𝑗) on the 𝑀×𝑁 UV-parameter mesh,

we denote the coordinates of the 𝑙-th node by (𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙), in which 𝑖 = 1, 2, ..., 𝑀; 𝑗 = 1, 2, ..., 𝑁;

𝑙 = 1, 2, 3, 4. The coordinates (𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙) can be calculated by

if 𝑗 = 1 and 𝑙 = 1, 2: 𝑝𝑖, 𝑗 ,1 = 𝑝𝑖, 𝑗 ,2 = (2𝑖 − 1)/(2𝑀), 𝑞𝑖, 𝑗 ,1 = 𝑞𝑖, 𝑗 ,2 = 0;

if 𝑗 = 𝑁 and 𝑙 = 3, 4: 𝑝𝑖, 𝑗 ,3 = 𝑝𝑖, 𝑗 ,4 = (2𝑖 − 1)/(2𝑀), 𝑞𝑖, 𝑗 ,3 = 𝑞𝑖, 𝑗 ,4 = 1;

otherwise: 𝑝𝑖, 𝑗 ,1 = (𝑖 − 1)/𝑀, 𝑞𝑖, 𝑗 ,1 = ( 𝑗 − 1)/𝑁,

𝑝𝑖, 𝑗 ,2 = 𝑖/𝑀, 𝑞𝑖, 𝑗 ,2 = ( 𝑗 − 1)/𝑁,

𝑝𝑖, 𝑗 ,3 = 𝑖/𝑀, 𝑞𝑖, 𝑗 ,3 = 𝑗/𝑁,

𝑝𝑖, 𝑗 ,4 = (𝑖 − 1)/𝑀, 𝑞𝑖, 𝑗 ,4 = 𝑗/𝑁.

(S37)

By substituting Equation (S37) into Equation (S25), we can map the parameters (𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙) to the

spatial vertex positions, denoted by (𝑥𝑖, 𝑗 ,𝑙 , 𝑦𝑖, 𝑗 ,𝑙 , 𝑧𝑖, 𝑗 ,𝑙). The map can be expressed as

(𝑥𝑖, 𝑗 ,𝑙 , 𝑦𝑖, 𝑗 ,𝑙 , 𝑧𝑖, 𝑗 ,𝑙) = gsphere-UV(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙 ; 𝑅). (S38)

Through this map, the panels and vertices of the UV meshes inherit the indices 𝑖, 𝑗 , 𝑙 of the cells

and nodes of the UV-parameter mesh. In addition, to express the assignment of the creases, we

define the bi-value parameter

𝑐𝑖, 𝑗 =


+1, if the crease connects vertices 1 and 3,

−1, if the crease connects vertices 2 and 4,
(S39)

where 𝑖 = 1, 2, ..., 𝑀 , 𝑗 = 2, 3, ..., 𝑁 − 1, and the index (𝑖, 𝑗) represents the quadrilaterals to which

the assignment is applied. Figure S15A shows a UV-parameter mesh which can generate 16 × 8



compact UV meshes. By setting 𝑐𝑖, 𝑗 = +1 for all 𝑖, 𝑗 , we can obtain the compact spherical UV mesh

demonstrated in Figure S15B.

Deployed UV mesh. Figure S16B shows the regular deployed UV-parameter mesh composed of

8 × 4 obliquely placed parallelograms and triangles in the unit square region in the parameter

space. As shown in Figure S16C left, for an 𝑀 × 𝑁 UV-parameter mesh, each obliquely placed

parallelogram occupies a larger rectangular region of width 1/𝑀 and height 1/(𝑁 − 1) while each

triangle occupies a rectangular region of width 1/𝑀 and height 1/(2𝑁 −2). The parallelogram cell

divides the horizontal edge of the rectangle into 𝑢1 and 𝑢2, and divides the vertical edge into 𝑣1 and

𝑣2. We use Equation (S35) to determine 𝑢1 and 𝑢2:

𝑢1 =
1
𝑀

tan(𝜉/2)
1 + tan(𝜉/2) , 𝑢2 =

1
𝑀

1
1 + tan(𝜉/2) . (S40)

On the vertical side, 𝑣1 and 𝑣2 are determined by

𝑣1 =
1

𝑁 − 1
tan(𝜉/2)

1 + tan(𝜉/2) , 𝑣2 =
1

𝑁 − 1
1

1 + tan(𝜉/2) . (S41)

The triangular cell divides the horizontal edge of the rectangle into 𝑢1 and 𝑢2 and divides the vertical

edge into 𝑣1 and 𝑣̂2. The expressions of 𝑢1, 𝑢2, and 𝑣1 are the same as those for the parallelogram

cells, while 𝑣̂2 is expressed by

𝑣̂2 =
1

2𝑁 − 2
1 − tan(𝜉/2)
1 + tan(𝜉/2) . (S42)

We note that in Equations (S40)–(S42), the variable 𝜉 is not any existing angle in the deployed

UV-parameter mesh, but is only a parameter that controls the deployment of the pattern. If 𝜉 = 0,

𝑢1 and 𝑣1 equal zero, and therefore lead to a compact UV-parameter mesh. Next, we give the

coordinates of the nodes of the parallelogram and triangles. To this end, we index the cells and

nodes as shown in Figure S16E. The index rules are the same as those applied to the compact

UV-parameter mesh, where the triangles are considered as degenerate quadrilaterals assigned four

nodal indices. For the cell (𝑖, 𝑗) on the deployed 𝑀 ×𝑁 UV-parameter mesh, the coordinates of the



𝑙-th node (𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙) can be calculated by

for even 𝑖 + 𝑗 :

if 𝑗 = 1 and 𝑙 = 1, 2: 𝑝𝑖, 𝑗 ,1 = 𝑝𝑖, 𝑗 ,2 = (𝑖 − 1)/𝑀, 𝑞𝑖, 𝑗 ,1 = 𝑞𝑖, 𝑗 ,2 = 0;

if 𝑗 = 𝑁 and 𝑙 = 3, 4: 𝑝𝑖, 𝑗 ,3 = 𝑝𝑖, 𝑗 ,4 = (𝑖 − 1)/𝑀, 𝑞𝑖, 𝑗 ,3 = 𝑞𝑖, 𝑗 ,4 = 1;

otherwise: 𝑝𝑖, 𝑗 ,1 = (𝑖 − 1)/𝑀, 𝑞𝑖, 𝑗 ,1 = ( 𝑗 − 1)/𝑁 + 𝑣1,

𝑝𝑖, 𝑗 ,2 = 𝑖/𝑀 − 𝑢1, 𝑞𝑖, 𝑗 ,2 = ( 𝑗 − 1)/𝑁,

𝑝𝑖, 𝑗 ,3 = 𝑖/𝑀, 𝑞𝑖, 𝑗 ,3 = 𝑗/𝑁 − 𝑣1,

𝑝𝑖, 𝑗 ,4 = (𝑖 − 1)/𝑀 + 𝑢1, 𝑞𝑖, 𝑗 ,4 = 𝑗/𝑁;

for odd 𝑖 + 𝑗 :

if 𝑗 = 1 and 𝑙 = 1, 2: 𝑝𝑖, 𝑗 ,1 = 𝑝𝑖, 𝑗 ,2 = 𝑖/𝑀, 𝑞𝑖, 𝑗 ,1 = 𝑞𝑖, 𝑗 ,2 = 0;

if 𝑗 = 𝑁 and 𝑙 = 3, 4: 𝑝𝑖, 𝑗 ,3 = 𝑝𝑖, 𝑗 ,4 = 𝑖/𝑀, 𝑞𝑖, 𝑗 ,3 = 𝑞𝑖, 𝑗 ,4 = 1;

otherwise: 𝑝𝑖, 𝑗 ,1 = (𝑖 − 1)/𝑀 + 𝑢1, 𝑞𝑖, 𝑗 ,1 = ( 𝑗 − 1)/𝑁,

𝑝𝑖, 𝑗 ,2 = 𝑖/𝑀, 𝑞𝑖, 𝑗 ,2 = ( 𝑗 − 1)/𝑁 + 𝑣1,

𝑝𝑖, 𝑗 ,3 = 𝑖/𝑀 − 𝑢1, 𝑞𝑖, 𝑗 ,3 = 𝑗/𝑁,

𝑝𝑖, 𝑗 ,4 = (𝑖 − 1)/𝑀, 𝑞𝑖, 𝑗 ,4 = 𝑗/𝑁 − 𝑣1.

(S43)

Then we can substitute Equation (S43) into Equation (S30), mapping the parameters (𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)

to the spatial vertex positions, denoted by (𝑥𝑖, 𝑗 ,𝑙 , 𝑦𝑖, 𝑗 ,𝑙 , 𝑧𝑖, 𝑗 ,𝑙). The map can be expressed as

(𝑥𝑖, 𝑗 ,𝑙 , 𝑦𝑖, 𝑗 ,𝑙 , 𝑧𝑖, 𝑗 ,𝑙) = gtorus-UV(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙 ; 𝑅, 𝑟). (S44)

We can assign different values to 𝜉 and obtain various deployed UV-parameter meshes. If we

specify 𝜉 = 𝜋/3, we can obtain the UV-parameter mesh in Figure S15C. In this case, we substitute

Equation (S43) into Equation (S44) and then generate the toric UV mesh in Figure S15D. If we

specify 𝜉 = 𝜋/2, we can obtain the UV-parameter mesh in Figure S15E. In this case, we substitute

Equation (S43) into Equation (S44) and then generate the toric UV mesh in Figure S15F.

S4 Optimization for compatibility

Independent parameters for compact RS mesh. Consider an RS mesh enclosing a cube of half

side length 𝐿 or a sphere of radius 𝑅. The RS mesh can be determined by the size variable 𝐿 or 𝑅



and the elements in the following set

PRS = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� 𝑖, 𝑗 = 1, 2, ..., 𝑁; 𝑘 = 1, 2, ..., 6; 𝑙 = 1, 2, 3, 4}, (S45)

where 𝑝𝑖, 𝑗 ,𝑘,𝑙 and 𝑞𝑖, 𝑗 ,𝑘,𝑙 are the parameters that determine the vertex positions. In terms of opti-

mization variables, however, there are numerous redundant parameters in PRS due to the following

reasons. (1) The common vertices of adjacent panels are at the same position and therefore share

the same parameters. (2) Some vertices are restricted to move only on the boundaries and therefore

have only one independent parameter. (3) The vertices at both ends of a boundary are fixed (see

Equations (S1) and (S8)) and therefore have zero independent parameter. Considering the reasons

above, we classify the vertices of an RS mesh into three categories: the interior vertices, the bound-

ary vertices, and the corner vertices. Figure S6A shows a 4 × 4 compact RS-parameter mesh with

the independent local indices of the interior, boundary, and corner vertices. Compared with the

indices in Figure S5D, we have removed the redundant indices such that only one index is reserved

for the vertices at the same position. We can see that on the interior region, each index corresponds

to four vertices; on the boundaries, each index corresponds to two vertices; at the corner, the index

and vertex have a one-to-one correspondence. We recall that on the continuous intersections (see

edges 1 to 8 in Figure S2C) of an RS mesh, the adjacent panels, which belong to different faces, are

connected by their common vertices. These common vertices are also located at the same position

so that there exist additional redundant parameters on the continuous intersections. Now we extract

the independent parameters from PRS for a general compact 𝑁 × 𝑁 × 6 RS mesh. First, the interior

vertices are parameterized by the elements in the following set

Pint.-c-RS = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� 𝑖, 𝑗 = 2, 3, ..., 𝑁, 𝑘 = 1, 2, ..., 6, 𝑙 = 1}. (S46)

Second, the boundary vertices are parameterized by the elements in the following set

Pbdy.-c-RS = Pbdy.-c-RS,1 ∪ Pbdy.-c-RS,2 ∪ Pbdy.-c-RS,3 ∪ Pbdy.-c-RS,4, (S47)



where the four subsets Pbdy.-c-RS,1, Pbdy.-c-RS,2, Pbdy.-c-RS,3, and Pbdy.-c-RS,4 correspond to the bottom,

right, top, and left boundaries of the RS mesh, respectively, and their elements are given by

Pbdy.-c-RS,1 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 0)
�� 𝑖 = 2, 3, ..., 𝑁; 𝑗 = 1; 𝑘 = 1, 2, 3, 4; 𝑙 = 1},

Pbdy.-c-RS,2 = {(1, 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� 𝑖 = 𝑁; 𝑗 = 2, 3, ..., 𝑁; 𝑘 = 5, 6; 𝑙 = 2},

Pbdy.-c-RS,3 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 1)
�� 𝑖 = 1, 2, ..., 𝑁 − 1; 𝑗 = 𝑁; 𝑘 = 1, 2, 3, 4; 𝑙 = 3},

Pbdy.-c-RS,4 = {(0, 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� 𝑖 = 1; 𝑗 = 1, 2, ..., 𝑁 − 1; 𝑘 = 1, 2, ..., 6; 𝑙 = 4}.

(S48)

We follow the global edge indices in Figure S2C. Then, the subset Pbdy.-c-RS,1 represents the

boundaries 1, 3, 9, and 11; the subset Pbdy.-c-RS,2 represents the boundaries 10 and 14; the subset

Pbdy.-c-RS,3 represents the boundaries 2, 4, 13, and 15; the subset Pbdy.-c-RS,4 represents the boundaries

5, 6, 7, 8, 12, and 16. Third, the corner vertices are fixed, corresponding to the following set of

constant elements:

Pcor.-c-RS = {(0, 0)𝑘 , (1, 0)𝑘 , (1, 1)𝑘 , (0, 1)𝑘
�� 𝑘 = 1, 3}. (S49)

Altogether, we define the following union set

Pc-RS = Pint.-c-RS ∪ Pbdy.-c-RS ∪ Pcor.-c-RS, (S50)

which has no redundant parameters and determines all the vertex positions. Importantly, we have

the following equivalence

Pc-RS ∼ PRS, (S51)

in the sense that the parameters determining the same vertex positions are considered to be equivalent

with each other. This equivalence can also be written in the expanded form as

for interior vertices:

𝑝𝑖, 𝑗 ,𝑘,1 = 𝑝𝑖−1, 𝑗 ,𝑘,2 = 𝑝𝑖−1, 𝑗−1,𝑘,3 = 𝑝𝑖, 𝑗−1,𝑘,4, 𝑖, 𝑗 > 1; 𝑘 = 1, 2, ..., 6;

𝑞𝑖, 𝑗 ,𝑘,1 = 𝑞𝑖−1, 𝑗 ,𝑘,2 = 𝑞𝑖−1, 𝑗−1,𝑘,3 = 𝑞𝑖, 𝑗−1,𝑘,4, 𝑖, 𝑗 > 1; 𝑘 = 1, 2, ..., 6;



for boundary vertices on the same face:

𝑝𝑖,1,𝑘,1 = 𝑝𝑖−1,1,𝑘,2, 𝑞𝑖,1,𝑘,1 = 𝑞𝑖−1,1,𝑘,2 = 0, 𝑖 > 1; 𝑘 = 1, 2, ..., 6;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞𝑁, 𝑗−1,𝑘,3, 𝑝𝑁, 𝑗 ,𝑘,2 = 𝑝𝑁, 𝑗−1,𝑘,3 = 0, 𝑗 > 1; 𝑘 = 1, 2, ..., 6;

𝑝𝑖,𝑁,𝑘,3 = 𝑝𝑖+1,𝑁,𝑘,4, 𝑞𝑖,𝑁,𝑘,3 = 𝑞𝑖+1,𝑁,𝑘,4 = 0, 𝑖 < 𝑁; 𝑘 = 1, 2, ..., 6;

𝑞1, 𝑗 ,𝑘,4 = 𝑞1, 𝑗+1,𝑘,1, 𝑝1, 𝑗 ,𝑘,4 = 𝑝1, 𝑗+1,𝑘,1 = 0, 𝑗 < 𝑁; 𝑘 = 1, 2, ..., 6;

for boundary vertices on adjacent faces:

𝑝𝑖,1,𝑘,1 = 𝑝𝑖,𝑁,𝑘 ′,4, 𝑖 > 1; 𝑘 = 1, 𝑘′ = 5;

𝑝𝑖,1,𝑘,1 = 𝑝𝑖,𝑁,𝑘 ′,4, 𝑖 > 1; 𝑘 = 6, 𝑘′ = 1;

𝑝𝑖,1,𝑘,1 = 𝑝𝑁−𝑖+1,1,𝑘 ′,2, 𝑖 > 1; 𝑘 = 3, 𝑘′ = 5;

𝑝𝑖,𝑁,𝑘,3 = 𝑝𝑁−𝑖+1,𝑁,𝑘 ′,4, 𝑖 < 𝑁; 𝑘 = 3, 𝑘′ = 6;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, 𝑗 > 1; 𝑘 = 4, 𝑘′ = 1;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, 𝑗 > 1; 𝑘 = 1, 𝑘′ = 2;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, 𝑗 > 1; 𝑘 = 2, 𝑘′ = 3;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, 𝑗 > 1; 𝑘 = 3, 𝑘′ = 4;

for corner vetices:

𝑝1,1,𝑘,1 = 0, 𝑞1,1,𝑘,1 = 0, 𝑘 = 1, 2, ..., 6;

𝑝𝑁,1,𝑘,1 = 1, 𝑞𝑁,1,𝑘,1 = 0, 𝑘 = 1, 2, ..., 6;

𝑝𝑁,𝑁,𝑘,1 = 1, 𝑞𝑁,𝑁,𝑘,1 = 1, 𝑘 = 1, 2, ..., 6;

𝑝1,𝑁,𝑘,1 = 0, 𝑞1,𝑁,𝑘,1 = 1, 𝑘 = 1, 2, ..., 6;

(S52)

where 𝑖, 𝑗 = 1, 2, ..., 𝑁 . Inserting the parameters in Pc-RS into Equation (S7) or (S20), we can obtain

all the vertex positions of a compact RS mesh. We collect the spatial coordinates of all these vertices

to construct the following set:

Xc-RS = {(𝑥𝑖, 𝑗 ,𝑘,𝑙 , 𝑦𝑖, 𝑗 ,𝑘,𝑙 , 𝑧𝑖, 𝑗 ,𝑘,𝑙)
�� (𝑖, 𝑗 , 𝑘, 𝑙) ∈ Ic-RS}, (S53)

where the set Ic-RS contains indices (𝑖, 𝑗 , 𝑘, 𝑙) corresponding to the independent parameters

(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙) ∈ Pc-RS. Then, we define a function gc-RS to express the map from Pc-RS to



Xc-RS as

xc = gc-RS(pc; 𝑎c-RS); xc ∈ Xc-RS, pc ∈ Pc-RS, (S54)

where the variable 𝑎c-RS is the size of the surface (𝐿 or 𝑅) with the compact RS mesh. Inversely,

with Equation (S6) or (S19), we can define a function fc-RS to express the map from Xc-RS to Pc-RS

as

pc = fc-RS(xc; 𝑎c-RS); pc ∈ Pc-RS, xc ∈ Xc-RS. (S55)

Independent parameters for deployed RS mesh. When an RS mesh is deployed from the compact

state, some vertices at the same position will move apart, and therefore, their parameters are no

longer identical. As a result, we have more independent parameters. Figure S6B shows a 4 × 4

deployed RS-parameter mesh and the local indices corresponding to the interior, boundary, and

corner vertices. We can see that on the interior region, each index corresponds to two vertices; on

the boundaries, the index and vertex have a one-to-one correspondence. It is worth noting that the

previous corner vertices on the compact mesh become boundary vertices on the deployed mesh

because they move away from the two ends on the boundaries due to deployment. We recall that

the set PRS given by Equation (S45) contains all the parameter pairs that determine an RS mesh. In

general, for a deployed 𝑁 ×𝑁 ×6 RS mesh, we extract the independent parameters from the set PRS

in the following way. First, the interior vertices are parameterized by the elements in the following

set

Pint.-d-RS = Pint.-d-RS,1 ∪ Pint.-d-RS,2 ∪ Pint.-d-RS,3 ∪ Pint.-d-RS,4, (S56)

where the subsets Pint.-d-RS,1 and Pint.-d-RS,2 correspond to the panels that rotate clockwise (even

𝑖 + 𝑗) when deployed, and the subsets Pint.-d-RS,3 and Pint.-d-RS,4 correspond to the panels that rotate

counterclockwise (odd 𝑖 + 𝑗), and their elements are given by

Pint.-d-RS,1 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� even 𝑖 + 𝑗 , 𝑖 < 𝑁, 𝑙 = 3},

Pint.-d-RS,2 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� even 𝑖 + 𝑗 , 𝑗 < 𝑁, 𝑙 = 4},

Pint.-d-RS,3 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� odd 𝑖 + 𝑗 , 𝑖 < 𝑁; 𝑙 = 2},

Pint.-d-RS,4 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� odd 𝑖 + 𝑗 , 𝑗 < 𝑁; 𝑙 = 3}.

(S57)

In the definitions above, we have 𝑖, 𝑗 = 1, 2, ..., 𝑁 and 𝑘 = 1, 2, ..., 6. Second, the boundary vertices

are parameterized by the elements in the following set

(S58)Pbdy.-d-RS = Pbdy.-d-RS,1 ∪ Pbdy.-d-RS,2 ∪ Pbdy.-d-RS,3 ∪ Pbdy.-d-RS,4, 



where the four subsets Pbdy.-d-RS,1, Pbdy.-d-RS,2, Pbdy.-d-RS,3, and Pbdy.-d-RS,4 correspond to the bottom,

right, top, and left boundaries of the meshes, respectively, and their elements are given as follows

Pbdy.-d-RS,1 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 0)
�� 𝑙 = 2, even 𝑖 + 𝑗 or 𝑙 = 1, odd 𝑖 + 𝑗 ; 𝑘 = 1, 2, 3, 4},

Pbdy.-d-RS,2 = {(1, 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� 𝑙 = 3, even 𝑖 + 𝑗 or 𝑙 = 2, odd 𝑖 + 𝑗 ; 𝑘 = 5, 6},

Pbdy.-d-RS,3 = {(𝑝𝑖, 𝑗 ,𝑘,𝑙 , 1)
�� 𝑙 = 4, even 𝑖 + 𝑗 or 𝑙 = 3, odd 𝑖 + 𝑗 ; 𝑘 = 1, 2, 3, 4},

Pbdy.-d-RS,4 = {(0, 𝑞𝑖, 𝑗 ,𝑘,𝑙)
�� 𝑙 = 1, even 𝑖 + 𝑗 or 𝑙 = 4, odd 𝑖 + 𝑗 ; 𝑘 = 1, 2, ..., 6},

(S59)

in which 𝑖, 𝑗 = 1, 2, ..., 𝑁 . In analogy to the compact meshes, we have removed the redundant

parameters on the continuous intersections—the subset Pbdy.-d-RS,1 corresponds to the boundaries

1, 3, 9, and 11 shown in Figure S2C; the subset Pbdy.-d-RS,2 corresponds to the boundaries 10 and

14; the subset Pbdy.-d-RS,3 corresponds to the boundaries 2, 4, 13, and 15; the subset Pbdy.-d-RS,4

corresponds to the boundaries 5, 6, 7, 8, 12, and 16. The following procedures is very similar to

those for the compact patterns. We define the following union set

Pd-RS = Pint.-d-RS ∪ Pbdy.-d-RS, (S60)

and then we have the following equivalence

Pd-RS ∼ PRS. (S61)

This equivalence can also be written in the expanded form as

for interior vertices:

𝑝𝑖, 𝑗 ,𝑘,3 = 𝑝𝑖+1, 𝑗 ,𝑘,4, 𝑞𝑖, 𝑗 ,𝑘,3 = 𝑞𝑖+1, 𝑗 ,𝑘,4, even 𝑖 + 𝑗 , 𝑖 < 𝑁; 𝑘 = 1, 2, ..., 6;

𝑝𝑖, 𝑗 ,𝑘,4 = 𝑝𝑖, 𝑗+1,𝑘,1, 𝑞𝑖, 𝑗 ,𝑘,4 = 𝑞𝑖, 𝑗+1,𝑘,1, even 𝑖 + 𝑗 , 𝑗 < 𝑁; 𝑘 = 1, 2, ..., 6;

𝑝𝑖, 𝑗 ,𝑘,2 = 𝑝𝑖+1, 𝑗 ,𝑘,1, 𝑞𝑖, 𝑗 ,𝑘,2 = 𝑞𝑖+1, 𝑗 ,𝑘,1, odd 𝑖 + 𝑗 , 𝑖 < 𝑁; 𝑘 = 1, 2, ..., 6;

𝑝𝑖, 𝑗 ,𝑘,3 = 𝑝𝑖, 𝑗+1,𝑘,2, 𝑞𝑖, 𝑗 ,𝑘,3 = 𝑞𝑖, 𝑗+1,𝑘,2, odd 𝑖 + 𝑗 , 𝑗 < 𝑁; 𝑘 = 1, 2, ..., 6;

for boundary vertices on the same face:

𝑞𝑖−1,1,𝑘,1 = 𝑞𝑖,1,𝑘,2 = 0, even 𝑖, 𝑘 = 1, 2, ..., 6;

𝑝𝑁, 𝑗−1,𝑘,2 = 𝑝𝑁, 𝑗 ,𝑘,3 = 0, even 𝑗 , 𝑘 = 1, 2, ..., 6;

𝑞𝑖−1,𝑁,𝑘,3 = 𝑞𝑖,𝑁,𝑘,4 = 0, even 𝑖, 𝑘 = 1, 2, ..., 6;

𝑝1, 𝑗−1,𝑘,1 = 𝑝1, 𝑗 ,𝑘,4 = 0, even 𝑗 , 𝑘 = 1, 2, ..., 6;



for boundary vertices on adjacent faces:

𝑝𝑖,1,𝑘,2 = 𝑝𝑖,𝑁,𝑘 ′,3, odd 𝑖; 𝑝𝑖,1,𝑘,1 = 𝑝𝑖,𝑁,𝑘 ′,4, even 𝑖; 𝑘 = 1, 𝑘′ = 5;

𝑝𝑖,1,𝑘,2 = 𝑝𝑖,𝑁,𝑘 ′,3, odd 𝑖; 𝑝𝑖,1,𝑘,1 = 𝑝𝑖,𝑁,𝑘 ′,4, even 𝑖; 𝑘 = 6, 𝑘′ = 1;

𝑝𝑖,1,𝑘,2 = 𝑝𝑁−𝑖+1,1,𝑘 ′,1, odd 𝑖; 𝑝𝑖,1,𝑘,1 = 𝑝𝑁−𝑖+1,1,𝑘 ′,2, even 𝑖; 𝑘 = 3, 𝑘′ = 5;

𝑝𝑖,𝑁,𝑘,3 = 𝑝𝑁−𝑖+1,𝑁,𝑘 ′,4, odd 𝑖; 𝑝𝑖,𝑁,𝑘,4 = 𝑝𝑁−𝑖+1,𝑁,𝑘 ′,3, even 𝑖; 𝑘 = 3, 𝑘′ = 6;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, odd 𝑗 ; 𝑞𝑁, 𝑗 ,𝑘,3 = 𝑞1, 𝑗 ,𝑘 ′,4, even 𝑗 ; 𝑘 = 4, 𝑘′ = 1;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, odd 𝑗 ; 𝑞𝑁, 𝑗 ,𝑘,3 = 𝑞1, 𝑗 ,𝑘 ′,4, even 𝑗 ; 𝑘 = 1, 𝑘′ = 2;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, odd 𝑗 ; 𝑞𝑁, 𝑗 ,𝑘,3 = 𝑞1, 𝑗 ,𝑘 ′,4, even 𝑗 ; 𝑘 = 2, 𝑘′ = 3;

𝑞𝑁, 𝑗 ,𝑘,2 = 𝑞1, 𝑗 ,𝑘 ′,1, odd 𝑗 ; 𝑞𝑁, 𝑗 ,𝑘,3 = 𝑞1, 𝑗 ,𝑘 ′,4, even 𝑗 ; 𝑘 = 3, 𝑘′ = 4;

(S62)

where 𝑖, 𝑗 = 1, 2, ..., 𝑁 . The set Pd-RS has no redundant parameters and determines all the vertex

positions of a deployed RS mesh when substituted into Equation (S7) or Equation (S20). We collect

the spatial coordinates of all these vertices to construct the following set

Xd-RS = {(𝑥𝑖, 𝑗 ,𝑘,𝑙 , 𝑦𝑖, 𝑗 ,𝑘,𝑙 , 𝑧𝑖, 𝑗 ,𝑘,𝑙)
�� (𝑖, 𝑗 , 𝑘, 𝑙) ∈ Id-RS}, (S63)

where the set Id-RS contains indices (𝑖, 𝑗 , 𝑘, 𝑙) corresponding to the parameters (𝑝𝑖, 𝑗 ,𝑘,𝑙 , 𝑞𝑖, 𝑗 ,𝑘,𝑙) ∈

Pd-RS. Then we define a function gd-RS to express the map from Pd-RS to Xd-RS as

xd = gd-RS(pd; 𝑎d-RS); xd ∈ Xd-RS, pd ∈ Pd-RS, (S64)

where the variable 𝑎d-RS is the size of the surface (𝐿 or 𝑅) with the deployed RS mesh. Inversely,

using Equation (S6) or (S19), we can define a function fd-RS to express the map from Xd-RS to Pd-RS

as

pd = fd-RS(xd; 𝑎d-RS); pd ∈ Pd-RS, xd ∈ Xd-RS. (S65)

Independent parameters for compact UV mesh. Consider an UV mesh enclosing a sphere of radius

𝑅 or a torus of major radius 𝑅 and minor radius 𝑟. The UV mesh can be determined by the radii 𝑅

and 𝑟 and the elements in the following set

PUV = {(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)
�� 𝑖 = 1, 2, ..., 𝑀; 𝑗 = 1, 2, ..., 𝑁; 𝑙 = 1, 2, 3, 4}, (S66)

where 𝑝𝑖, 𝑗 ,𝑙 and 𝑞𝑖, 𝑗 ,𝑙 are the parameters that determine the vertex positions. For a compact UV

mesh, as shown in Figure S17A, we can classify the vertices into interior vertices and polar vertices.



In the interior region, the common vertices of adjacent panels are at the same position and therefore

redundant parameters emerge here. The polar vertices are fixed at the two polar points of the

sphere, so that there is no effective parameter. We extract the independent parameters from PUV

of a compact 𝑀 × 𝑁 UV mesh. We recall that 𝑀 and 𝑁 are assumed to be positive even integers.

First, the interior vertices are parameterized by the elements in the following set

Pint.-c-UV = {(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)
�� 𝑖 = 1, 2, ..., 𝑀; 𝑗 = 2, 3, ..., 𝑁; 𝑙 = 1}. (S67)

Second, the polar vertices are fixed, corresponding to the following set of constant elements

Ppolar-c-UV = {(0, 0), (0, 1)}. (S68)

Altogether, we define the following union set

Pc-UV = Pint.-c-UV ∪ Ppolar-c-UV, (S69)

which has no redundant parameters and determines all the vertex positions of a compact UV mesh.

We have the following equivalence

Pc-UV ∼ PUV, (S70)

which can be written in the expanded form as

for interior vertices:

𝑝𝑖, 𝑗 ,1 = 𝑝𝑖−1, 𝑗 ,2 = 𝑝𝑖−1, 𝑗−1,3 = 𝑝𝑖, 𝑗−1,4, 𝑗 > 1;

𝑞𝑖, 𝑗 ,1 = 𝑞𝑖−1, 𝑗 ,2 = 𝑞𝑖−1, 𝑗−1,3 = 𝑞𝑖, 𝑗−1,4, 𝑗 > 1;

for polar vertices:

𝑝𝑖,1,1 = 𝑝𝑖,1,2 = 0, 𝑞𝑖,1,1 = 𝑞𝑖,1,2 = 0;

𝑝𝑖,𝑁,3 = 𝑝𝑖,𝑁,4 = 0, 𝑞𝑖,𝑁,3 = 𝑞𝑖,𝑁,4 = 1;

(S71)

where 𝑖 = 1, 2, ..., 𝑀 , 𝑗 = 1, 2, ..., 𝑁 , and we stipulate that 𝑖 − 1 = 𝑀 for 𝑖 = 1. Then, by inserting

the parameters in Pc-UV to Equation (S25), we can obtain all the vertex positions of a compact UV

mesh. We collect the spatial coordinates of all these vertices to construct the following set

Xc-UV = {(𝑥𝑖, 𝑗 ,𝑙 , 𝑦𝑖, 𝑗 ,𝑙 , 𝑧𝑖, 𝑗 ,𝑙)
�� (𝑖, 𝑗 , 𝑙) ∈ Ic-UV}, (S72)



where the set Ic-UV contains the indices (𝑖, 𝑗 , 𝑙) corresponding to the independent parameters

(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙) ∈ Pc-UV. We define a function gc-UV to express the map from Pc-UV to Xc-UV as

xc = gc-UV(pc; 𝑎c-UV); xc ∈ Xc-UV, pc ∈ Pc-UV, (S73)

where the variable 𝑎c-UV is the radius 𝑅 of the sphere with the compact UV mesh. Inversely, using

Equation (S24), we can define a function fc-UV to express the map from Xc-UV to Pc-UV as

pc = fc-UV(xc; 𝑎c-UV); pc ∈ Pc-UV, xc ∈ Xc-UV. (S74)

Independent parameters for deployed UV mesh. Now we consider a deployed UV mesh enclosing

a torus of major radius 𝑅 and minor radius 𝑟. As shown in Figure S17B, we can classify the vertices

into the interior vertices and the boundary vertices. We note that the previous polar vertices on the

compact pattern become boundary vertices on the deployed pattern because they move from the

polar points to the inner circumference after the deployment. We can see that either in the interior

region or on the boundary, each index corresponds to two vertices. However, the boundary vertices

are different from the interior vertices because they only move on the inner circumference (that

is, the intersection) during the optimization. We recall that the set PUV given by Equation (S66)

contain parameters that determine an UV mesh. In general, for a deployed 𝑀 × 𝑁 UV mesh, we

extract the independent parameters from PUV in the following way. First, the interior vertices are

parameterized by the elements in the following set

Pint.-d-UV = Pint.-d-UV,1 ∪ Pint.-d-UV,2 ∪ Pint.-d-UV,3 ∪ Pint.-d-UV,4, (S75)

where the subsets Pint.-d-UV,1 and Pint.-d-UV,2 correspond to the panels that rotate clockwise (even

𝑖 + 𝑗) when deployed, and the subsets Pint.-d-UV,3 and Pint.-d-UV,4 correspond to the panels that rotate

counterclockwise (odd 𝑖 + 𝑗). Their elements are given by

Pint.-d-UV,1 = {(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)
�� even 𝑖 + 𝑗 , 𝑗 > 1, 𝑙 = 1},

Pint.-d-UV,2 = {(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)
�� even 𝑖 + 𝑗 , 𝑗 < 𝑁, 𝑙 = 4},

Pint.-d-UV,3 = {(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)
�� odd 𝑖 + 𝑗 ; 𝑗 < 𝑁; 𝑙 = 3},

Pint.-d-UV,4 = {(𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙)
�� odd 𝑖 + 𝑗 ; 𝑗 < 𝑁; 𝑙 = 4},

(S76)

in which 𝑖, 𝑗 = 1, 2, ..., 𝑁 . Second, the boundary vertices are parameterized by the elements in the

following set

(S77)Pbdy.-d-UV = Pbdy.-d-UV,1 ∪ Pbdy.-d-UV,2, 



where the subsets Pbdy.-d-UV,1 and Pbdy.-d-UV,2 correspond to the bottom (𝑞𝑖, 𝑗 ,𝑙 = 0) and top (𝑞𝑖, 𝑗 ,𝑙 = 1)

boundaries of the meshes, respectively, and their elements are given by

Pbdy.-d-UV,1 = {(𝑝𝑖, 𝑗 ,𝑙 , 0)
�� 𝑖 = 1, 3, ..., 𝑀 − 1; 𝑗 = 1; 𝑙 = 1},

Pbdy.-d-UV,2 = {(𝑝𝑖, 𝑗 ,𝑙 , 1)
�� 𝑖 = 1, 3, ..., 𝑀 − 1; 𝑗 = 𝑁; 𝑙 = 3}.

(S78)

The following procedures are very similar to those for the compact meshes. We define the following

union set

Pd-UV = Pint.-d-UV ∪ Pbdy.-d-UV, (S79)

and then we have the following equivalence

Pd-UV ∼ PUV, (S80)

which can be written in the expanded form as

for interior vertices:

𝑝𝑖, 𝑗 ,1 = 𝑝𝑖−1, 𝑗 ,2, 𝑞𝑖, 𝑗 ,1 = 𝑞𝑖−1, 𝑗 ,2, even 𝑖 + 𝑗 , 𝑗 > 1;

𝑝𝑖, 𝑗 ,4 = 𝑝𝑖, 𝑗+1,1, 𝑞𝑖, 𝑗 ,4 = 𝑞𝑖, 𝑗+1,1, even 𝑖 + 𝑗 , 𝑗 < 𝑁;

𝑝𝑖, 𝑗 ,3 = 𝑝𝑖, 𝑗+1,2, 𝑞𝑖, 𝑗 ,3 = 𝑞𝑖, 𝑗+1,2, odd 𝑖 + 𝑗 , 𝑗 < 𝑁;

𝑝𝑖, 𝑗 ,4 = 𝑝𝑖−1, 𝑗 ,3, 𝑞𝑖, 𝑗 ,4 = 𝑞𝑖−1, 𝑗 ,3, odd 𝑖 + 𝑗 , 𝑗 < 𝑁;

for boundary vertices:

𝑝𝑖,1,1 = 𝑝𝑖,1,2 = 𝑝𝑖−1,1,1 = 𝑝𝑖−1,1,2, odd 𝑖;

𝑝𝑖,𝑁,3 = 𝑝𝑖,𝑁,4 = 𝑝𝑖−1,𝑁,3 = 𝑝𝑖−1,𝑁,4, odd 𝑖;

𝑞𝑖,1,1 = 𝑞𝑖,1,2 = 0;

𝑞𝑖,𝑁,3 = 𝑞𝑖,𝑁,4 = 1,

(S81)

where 𝑖 = 1, 2, ..., 𝑀 , 𝑗 = 1, 2, ..., 𝑁 , and we stipulate that 𝑖 − 1 = 𝑀 for 𝑖 = 1. The set Pd-UV

has no redundant parameters and determines all the vertex positions of a deployed UV mesh when

substituted into Equation (S30). We collect the spatial coordinates of all these vertices to construct

the following set

Xd-UV = {(𝑥𝑖, 𝑗 ,𝑙 , 𝑦𝑖, 𝑗 ,𝑙 , 𝑧𝑖, 𝑗 ,𝑙)
�� (𝑖, 𝑗 , 𝑙) ∈ Id-UV}, (S82)



where the set Id-UV contains indices (𝑖, 𝑗 , 𝑙) corresponding to the independent parameters (𝑝𝑖, 𝑗 ,𝑙 , 𝑞𝑖, 𝑗 ,𝑙) ∈

Pd-UV. Then, we define a function gd-UV to express the map from Pd-UV to Xd-UV as

xd = gd-UV(pd; ad-UV); xd ∈ Xd-UV, pd ∈ Pd-UV, (S83)

where ad-UV = (𝑅, 𝑟) is the array that contains the major radius 𝑅 and minor radius 𝑟 of the torus

with the deployed UV mesh. Inversely, with Equation (S29), we can define a function fd-UV to

express the map from Xd-UV to Pd-UV as

pd = fd-UV(xd; ad-UV); pd ∈ Pd-UV, xd ∈ Xd-UV. (S84)

Constraints for compatibility. To quantify the compatibility between the compact and deployed

meshes, we define the following metric function

𝑓metric(Xc,Xd, c) =
1
𝑁e

𝑁e∑︁
𝑘=1

(𝑠c,𝑘 − 𝑠d,𝑘 )2, (S85)

where 𝑠c,𝑘 is the 𝑘-th side length (including edges and diagonal crease) of a compact RS or UV

mesh; 𝑠d,𝑘 is the corresponding side length for the deployed mesh; Xc is the set of vertex positions

of the compact mesh, defined by Equation (S53) for an RS mesh or by Equation (S72) for a UV

mesh; Xd is the set of vertex positions of the deployed mesh, defined by Equation (S63) for an RS

mesh or by Equation (S82) for a UV mesh; c is the array of crease assignment defined by Equation

(S33) for an RS mesh or by Equation (S39) for a UV mesh. The metric function 𝑓metric can be

equivalently expressed by counting the panels:

𝑓metric(Xc,Xd, c) =
1

5𝑁p

𝑁p∑︁
𝑛=1

5∑︁
𝑚=1

(𝑠c,𝑚,𝑛 − 𝑠d,𝑚,𝑛)2, (S86)

where 𝑠c,𝑚,𝑛 is the 𝑚-th side (and crease) length of the 𝑛-th panel of a compact RS or UV mesh,

and 𝑠d,𝑚,𝑛 is the corresponding side length for the deployed mesh. The summation goes through all

the 𝑁p panels. For an 𝑁 × 𝑁 × 6 RS mesh, we have 𝑁p = 6𝑁2. For an 𝑀 × 𝑁 UV mesh, we have

𝑁p = 𝑀𝑁 . The panels of an RS or UV mesh can have different crease assignment (two diagonals)

and different shapes (quadrilaterals or triangles), as shown in Figure S7. The lengths 𝑠c,𝑚,𝑛 or 𝑠d,𝑚,𝑛

correspond to the four edges (𝑚 = 1, 2, 3, 4) and the assigned crease (𝑚 = 5). It is worth noting that

the triangular panels are considered to have an edge of zero length and the crease of zero length.



The constraint function of the optimization framework should receive the parameters Pc and Pd

and the size variables 𝑎c and 𝑎d as input instead of the vertex positions Xc and Xd. We note that

the size variable 𝑎d can be a scalar 𝑎d-RS for the deployed cubic or spherical RS meshes or a vector

ad-UV for the deployed toric UV mesh. For conciseness, we use the scalar notation 𝑎d to refer to

both 𝑎d-RS and ad-UV. Then, we define the compatibility constraint function as

𝑓comp. (Pc,Pd, 𝑎c, 𝑎d, c) =
𝑓metric [gc(Pc; 𝑎c), gd(Pd; 𝑎d)]

ℓ2
d

, (S87)

where Pc is the set of independent parameters of the compact mesh, defined by Equation (S50) for

an RS mesh or by Equation (S69) for a UV mesh; Pd is the set of independent parameters of the

deployed mesh, defined by Equation (S60) for an RS mesh or by Equation (S79) for a UV mesh;

𝑎c is the size of the compact mesh, equal to the half side length of a cube or the radius of a sphere;

𝑎d is either the size of the deployed mesh, equal to the half side length of a cube 𝐿, the radius of

a sphere 𝑅, or the array of the major radius and minor radius of a torus (𝑅, 𝑟); c is the array of

crease assignment defined by Equation (S33) for an RS mesh or by Equation (S39) for a UV mesh;

gc represents the map from the 2D parameters to the spatial vertex positions given by Equation

(S54) for a compact RS mesh or by Equation (S73) for a compact UV mesh; gd represents the

map from the 2D parameters to the spatial vertex positions given by Equation (S64) for a deployed

RS mesh or by Equation (S83) for a deploy UV mesh. We note that the constraint function is

nondimensionalized by a characteristic length of the deployed mesh ℓd. For the cubic RS mesh,

we define ℓd = 2𝑎d-RS/𝑁; for the spherical RS mesh, we define ℓd = 2𝜋𝑎d-RS/𝑁; for the toric UV

mesh, we define ℓd = [4𝜋2𝑅𝑟/(𝑀𝑁)]1/2, where 𝑅 and 𝑟 are components of ad-UV = (𝑅, 𝑟).

Constraints for relative positions of vertices. To avoid the distortion of the meshes, we should

impose constraints to relative positions of vertices in panels and slits. However, the panels and

slits are mainly skew quadrilaterals, which means their four vertices are not necessarily on the

same plane. It is complicated to characterize the “distortion” of the skew quadrilaterals directly

in the 3D space. We take advantage of the parametrization of the 3D coordinates and constrain

the vertex positions with their 2D coordinates in the parameter space. The counterpart of a skew

quadrilateral in the 3D space is a planar quadrilateral in the 2D space. As shown in Figure S9,

during the optimization, an initially-valid planar quadrilateral may evolve to a distorted one that

is non-convex, self-intersected, or orientation-reversing. We aim to avoid these circumstances by



imposing the following inequality constraints

n · [(p3 − p1) × (p2 − p1)] ≤ 0, n · [(p4 − p1) × (p3 − p1)] ≤ 0,

n · [(p4 − p2) × (p3 − p2)] ≤ 0, n · [(p1 − p2) × (p4 − p2)] ≤ 0,
(S88)

where n is the normal vector pointing towards the outside direction of the image. Essentially,

we have defined the “distortion” of a skew quadrilateral in the 3D space as the non-convexity,

self-intersection, or orientation reversing of its counterpart in the parameter space. In addition,

Equation (S88) can also avoid the orientation reversing of triangles if we consider the triangles

as degenerate quadrilaterals with two coinciding vertices. Therefore, Equation (S88) is a unified

constraint applicable to all the panels and slits of the RS or UV meshes. For both the compact and

deployed meshes, we work through all the panels and slits and collect the inequalities given by

Equation (S88). We denote all the inequalities by the following vectorized constraint

fpos. (Pc,Pd) ≤ 0, (S89)

where Pc is the set of independent parameters of compact meshes, defined by Equation (S50) for an

RS mesh and Equation (S69) for a UV mesh; Pd is the set of independent parameters of deployed

meshes, defined by Equation (S60) for an RS mesh and Equation (S79) for a UV mesh.

Constraints for continuity. For compact RS meshes, we recall that there are eight discontinuous

intersections (edges 9 to 16 in Figure S2C) at which the panels on different sides are not connected

with each other. This discontinuity may lead to additional slits at the boundaries, which are not

supposed to exist on a theoretically compact structure, as shown in Figure S10. To tackle this issue,

we align the corresponding vertices on the discontinuous intersections to remove the redundant

slits. These constraints can be easily expressed in the parameter space by

𝑝𝑖,1,𝑘,1 + 𝑞𝑁,𝑁−𝑖+2,𝑘 ′,2 = 1, 𝑖 = 2, 3, ..., 𝑁; 𝑘 = 2, 𝑘′ = 5;

𝑝𝑖,1,𝑘,1 − 𝑞1,𝑖−1,𝑘 ′,4 = 0, 𝑖 = 2, 3, ..., 𝑁; 𝑘 = 4, 𝑘′ = 5;

𝑝𝑖,𝑁,𝑘,3 − 𝑞𝑁,𝑖+1,𝑘 ′,2 = 0, 𝑖 = 1, 2, ..., 𝑁 − 1; 𝑘 = 2, 𝑘′ = 6;

𝑝𝑖,𝑁,𝑘,3 + 𝑞1,𝑁−𝑖,𝑘 ′,4 = 1, 𝑖 = 1, 2, ..., 𝑁 − 1; 𝑘 = 4, 𝑘′ = 6.

(S90)

We note that we cannot impose the continuity constraints to the compact and deployed states of an

RS mesh at the same time, because this causes over constraints that impede the convergence of the



optimization algorithm. The compact UV meshes have no discontinuous intersections. Therefore,

the compactness of a UV mesh can be guaranteed without additional constraints. Instead, we impose

continuity constraints at the discontinuous intersection of a deployed UV mesh by

𝑝𝑖,1,1 − 𝑝𝑖,𝑁,3 = 0, 𝑖 = 1, 3, ..., 𝑀 − 1. (S91)

Altogether, we have developed the continuity constraints for compact RS meshes or deployed UV

meshes. For conciseness, we define a unified expression to refer to Equations (S90) and (S91) by

fcont. (Pc,Pd) = 0, (S92)

where Pc is the set of independent parameters of the compact meshes, defined by Equation (S50)

for an RS mesh or by Equation (S69) for a UV mesh; Pd is the set of independent parameters of the

deployed meshes, defined by Equation (S60) for an RS mesh or by Equation (S79) for a UV mesh.

Constraints for symmetry. For the sake of the regularity of the optimized meshes, we can addi-

tionally impose constraints of symmetry to the vertex positions. Specifically, the RS meshes are

constrained to have three planes of mirror symmetry (the 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planes), and the UV

meshes are constrained to have one plane of mirror symmetry (the 𝑥𝑦 plane) as well as an axis of

rotational symmetry (the 𝑧 axis). The constraints of mirror symmetry for the compact and deployed

RS meshes can be expressed in the parameter space as

mirror symmetry with respect to 𝑦𝑧 plane:

𝑝𝑖, 𝑗 ,𝑘,1 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,2 = 1, 𝑞𝑖, 𝑗 ,𝑘,1 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,2 = 0, 𝑘 = 1, 3, 5, 6;

𝑝𝑖, 𝑗 ,𝑘,2 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,1 = 1, 𝑞𝑖, 𝑗 ,𝑘,2 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,1 = 0, 𝑘 = 1, 3, 5, 6;

𝑝𝑖, 𝑗 ,𝑘,3 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,4 = 1, 𝑞𝑖, 𝑗 ,𝑘,3 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,4 = 0, 𝑘 = 1, 3, 5, 6;

𝑝𝑖, 𝑗 ,𝑘,4 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,3 = 1, 𝑞𝑖, 𝑗 ,𝑘,4 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,3 = 0, 𝑘 = 1, 3, 5, 6;

𝑝𝑖, 𝑗 ,𝑘,1 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,2 = 1, 𝑞𝑖, 𝑗 ,𝑘,1 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,2 = 0, 𝑘 = 2, 𝑘′ = 4;

𝑝𝑖, 𝑗 ,𝑘,2 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,1 = 1, 𝑞𝑖, 𝑗 ,𝑘,2 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,1 = 0, 𝑘 = 2, 𝑘′ = 4;

𝑝𝑖, 𝑗 ,𝑘,3 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,4 = 1, 𝑞𝑖, 𝑗 ,𝑘,3 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,4 = 0, 𝑘 = 2, 𝑘′ = 4;

𝑝𝑖, 𝑗 ,𝑘,4 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,3 = 1, 𝑞𝑖, 𝑗 ,𝑘,4 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,3 = 0, 𝑘 = 2, 𝑘′ = 4;



mirror symmetry with respect to 𝑧𝑥 plane:

𝑝𝑖, 𝑗 ,𝑘,1 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,2 = 1, 𝑞𝑖, 𝑗 ,𝑘,1 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,2 = 0, 𝑘 = 2, 4;

𝑝𝑖, 𝑗 ,𝑘,2 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,1 = 1, 𝑞𝑖, 𝑗 ,𝑘,2 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,1 = 0, 𝑘 = 2, 4;

𝑝𝑖, 𝑗 ,𝑘,3 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,4 = 1, 𝑞𝑖, 𝑗 ,𝑘,3 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,4 = 0, 𝑘 = 2, 4;

𝑝𝑖, 𝑗 ,𝑘,4 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘,3 = 1, 𝑞𝑖, 𝑗 ,𝑘,4 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘,3 = 0, 𝑘 = 2, 4;

𝑝𝑖, 𝑗 ,𝑘,1 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,4 = 0, 𝑞𝑖, 𝑗 ,𝑘,1 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,4 = 1, 𝑘 = 5, 6;

𝑝𝑖, 𝑗 ,𝑘,2 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,3 = 0, 𝑞𝑖, 𝑗 ,𝑘,2 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,3 = 1, 𝑘 = 5, 6;

𝑝𝑖, 𝑗 ,𝑘,3 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,2 = 0, 𝑞𝑖, 𝑗 ,𝑘,3 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,2 = 1, 𝑘 = 5, 6;

𝑝𝑖, 𝑗 ,𝑘,4 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,1 = 0, 𝑞𝑖, 𝑗 ,𝑘,4 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,1 = 1, 𝑘 = 5, 6;

𝑝𝑖, 𝑗 ,𝑘,1 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,2 = 1, 𝑞𝑖, 𝑗 ,𝑘,1 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,2 = 0, 𝑘 = 1, 𝑘′ = 3;

𝑝𝑖, 𝑗 ,𝑘,2 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,1 = 1, 𝑞𝑖, 𝑗 ,𝑘,2 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,1 = 0, 𝑘 = 1, 𝑘′ = 3;

𝑝𝑖, 𝑗 ,𝑘,3 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,4 = 1, 𝑞𝑖, 𝑗 ,𝑘,3 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,4 = 0, 𝑘 = 1, 𝑘′ = 3;

𝑝𝑖, 𝑗 ,𝑘,4 + 𝑝𝑁+1−𝑖, 𝑗 ,𝑘 ′,3 = 1, 𝑞𝑖, 𝑗 ,𝑘,4 − 𝑞𝑁+1−𝑖, 𝑗 ,𝑘 ′,3 = 0, 𝑘 = 1, 𝑘′ = 3;

mirror symmetry with respect to 𝑥𝑦 plane:

𝑝𝑖, 𝑗 ,𝑘,1 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,4 = 0, 𝑞𝑖, 𝑗 ,𝑘,1 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,4 = 1, 𝑘 = 1, 2, 3, 4;

𝑝𝑖, 𝑗 ,𝑘,2 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,3 = 0, 𝑞𝑖, 𝑗 ,𝑘,2 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,3 = 1, 𝑘 = 1, 2, 3, 4;

𝑝𝑖, 𝑗 ,𝑘,3 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,2 = 0, 𝑞𝑖, 𝑗 ,𝑘,3 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,2 = 1, 𝑘 = 1, 2, 3, 4;

𝑝𝑖, 𝑗 ,𝑘,4 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘,1 = 0, 𝑞𝑖, 𝑗 ,𝑘,4 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘,1 = 1, 𝑘 = 1, 2, 3, 4;

𝑝𝑖, 𝑗 ,𝑘,1 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘 ′,4 = 0, 𝑞𝑖, 𝑗 ,𝑘,1 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘 ′,4 = 1, 𝑘 = 5, 𝑘′ = 6;

𝑝𝑖, 𝑗 ,𝑘,2 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘 ′,3 = 0, 𝑞𝑖, 𝑗 ,𝑘,2 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘 ′,3 = 1, 𝑘 = 5, 𝑘′ = 6;

𝑝𝑖, 𝑗 ,𝑘,3 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘 ′,2 = 0, 𝑞𝑖, 𝑗 ,𝑘,3 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘 ′,2 = 1, 𝑘 = 5, 𝑘′ = 6;

𝑝𝑖, 𝑗 ,𝑘,4 − 𝑝𝑖,𝑁+1− 𝑗 ,𝑘 ′,1 = 0, 𝑞𝑖, 𝑗 ,𝑘,4 + 𝑞𝑖,𝑁+1− 𝑗 ,𝑘 ′,1 = 1, 𝑘 = 5, 𝑘′ = 6;

(S93)

where 𝑖, 𝑗 = 1, 2, ..., 𝑁 . The constraints of mirror symmetry for the compact and deployed UV



meshes can be expressed in the parameter space as

mirror symmetry with respect to 𝑥𝑦 plane:

𝑝𝑖, 𝑗 ,1 − 𝑝𝑖,𝑁+1− 𝑗 ,4 = 0, 𝑞𝑖, 𝑗 ,1 + 𝑞𝑖,𝑁+1− 𝑗 ,4 = 1;

𝑝𝑖, 𝑗 ,2 − 𝑝𝑖,𝑁+1− 𝑗 ,3 = 0, 𝑞𝑖, 𝑗 ,2 + 𝑞𝑖,𝑁+1− 𝑗 ,3 = 1;

𝑝𝑖, 𝑗 ,3 − 𝑝𝑖,𝑁+1− 𝑗 ,2 = 0, 𝑞𝑖, 𝑗 ,3 + 𝑞𝑖,𝑁+1− 𝑗 ,2 = 1;

𝑝𝑖, 𝑗 ,4 − 𝑝𝑖,𝑁+1− 𝑗 ,1 = 0, 𝑞𝑖, 𝑗 ,4 + 𝑞𝑖,𝑁+1− 𝑗 ,1 = 1;

(S94)

where 𝑖 = 1, 2, ..., 𝑀 and 𝑗 = 1, 2, ..., 𝑁/2. The constraints of rotational symmetry for the compact

and deployed UV meshes can be expressed in the parameter space as

𝑝𝑖+2, 𝑗 ,𝑙 − 𝑝𝑖, 𝑗 ,𝑙 = 2/𝑀 − 1, 𝑞𝑖, 𝑗 ,𝑙 − 𝑞𝑖, 𝑗 ,𝑙 = 0; 𝑖 = 𝑀 − 2;

𝑝𝑖+2, 𝑗 ,𝑙 − 𝑝𝑖, 𝑗 ,𝑙 = 2/𝑀, 𝑞𝑖, 𝑗 ,𝑙 − 𝑞𝑖, 𝑗 ,𝑙 = 0; otherwise;
(S95)

where 𝑖 = 1, 2, ..., 𝑀 − 2 and 𝑗 = 1, 2, ..., 𝑁 . For conciseness, we define a unified expression to

refer to Equation (S93) for RS meshes, or Equations (S94) and (S95) for UV meshes, by

fsym. (Pc,Pd) = 0, (S96)

where Pc is the set of independent parameters of the compact meshes, defined by Equation (S50)

for an RS mesh or by Equation (S69) for a UV mesh; Pd is the set of independent parameters of

the deployed meshes, defined by Equation (S60) for an RS mesh or by Equation (S79) for a UV

mesh. We note that the constraints of symmetry are not necessary to guarantee the convergence of

the optimization algorithm.

Objective function. We define the objective function 𝑓obj. to specify opening angles of some slits at

the deployed compatible state so that, to a certain extent, we can control the degree of deployment

of the optimized RS or UV mesh. We note that the selection of objective function is based on the

specific demands in addition to the compatibility. One can define other objective functions, such as

the variance of the panel areas to pursue a higher uniformity of the meshes.

For the purpose of specifying certain opening angles of a deployed mesh, first, we define the

following angle function

𝑓angle(Xd) =
1
𝑁a

𝑁a∑︁
𝑛=1

(cos𝜔d,𝑛 − cos 𝜔̄d,𝑛)2, (S97)



where 𝜔d,𝑛 is the 𝑛-th opening angle that we aim to specify on a deployed RS or UV mesh, and

𝜔̄d,𝑛 is the specified value of the corresponding angle; Xd is the set of vertex positions of the

deployed meshes, defined by Equation (S63) for an RS mesh or by Equation (S82) for a UV mesh.

The number of opening angles to be controlled is denoted by 𝑁a. For RS meshes, we set 𝑁a = 6,

corresponding to the opening angles of the central slits of the six faces as shown in Figures S8A

and S8B. These opening angles 𝜔d,𝑛 can be given by

𝜔d-RS,𝑛 = arccos


(
x 𝑁

2 +1, 𝑁2 ,𝑛,3 − x 𝑁
2 , 𝑁2 ,𝑛,3

)
·
(
x 𝑁

2 , 𝑁2 ,𝑛,4 − x 𝑁
2 , 𝑁2 ,𝑛,3

)


x 𝑁
2 +1, 𝑁2 ,𝑛,3 − x 𝑁

2 , 𝑁2 ,𝑛,3




 


x 𝑁
2 , 𝑁2 ,𝑛,4 − x 𝑁

2 , 𝑁2 ,𝑛,3





 , (S98)

where 𝑛 = 1, 2, ..., 6, and the vertex coordinates x𝑖, 𝑗 ,𝑘,𝑙 belong to the set Xd-RS defined by Equation

(S63) for the RS meshes. For UV meshes, we set 𝑁a = 4, corresponding to the opening angles of

four slits at the outer circumference of the torus as shown in Figure S8C. In this case, the opening

angles 𝜔d,𝑛 are given by

𝜔d-UV,1 = arccos


(
x1, 𝑁2 ,3 − x1, 𝑁2 ,4

)
·
(
x𝑀, 𝑁2 ,4 − x1, 𝑁2 ,4

)


x1, 𝑁2 ,3 − x1, 𝑁2 ,4




 


x𝑀, 𝑁2 ,4 − x1, 𝑁2 ,4





 ,

𝜔d-UV,2 = arccos


(
x 𝑀

4 +1, 𝑁2 ,3 − x 𝑀
4 +1, 𝑁2 ,4

)
·
(
x 𝑀

4 , 𝑁2 ,4 − x 𝑀
4 +1, 𝑁2 ,4

)


x 𝑀
4 +1, 𝑁2 ,3 − x 𝑀

4 +1, 𝑁2 ,4




 


x 𝑀
4 , 𝑁2 ,4 − x 𝑀

4 +1, 𝑁2 ,4





 ,

𝜔d-UV,3 = arccos


(
x 𝑀

2 +1, 𝑁2 ,3 − x 𝑀
2 +1, 𝑁2 ,4

)
·
(
x 𝑀

2 , 𝑁2 ,4 − x 𝑀
2 +1, 𝑁2 ,4

)


x 𝑀
2 +1, 𝑁2 ,3 − x 𝑀

2 +1, 𝑁2 ,4




 


x 𝑀
2 , 𝑁2 ,4 − x 𝑀

2 +1, 𝑁2 ,4





 ,

𝜔d-UV,4 = arccos


(
x 3𝑀

4 +1, 𝑁2 ,3 − x 3𝑀
4 +1, 𝑁2 ,4

)
·
(
x 3𝑀

4 , 𝑁2 ,4 − x 3𝑀
4 +1, 𝑁2 ,4

)


x 3𝑀
4 +1, 𝑁2 ,3 − x 3𝑀

4 +1, 𝑁2 ,4




 


x 3𝑀
4 , 𝑁2 ,4 − x 3𝑀

4 +1, 𝑁2 ,4





 ,

(S99)

where the vertex coordinates x𝑖, 𝑗 ,𝑙 belong to the set Xd-UV defined by Equation (S82) for the UV

meshes.

Similar to the constraint functions, the objective function should receive the parameters Pd and

the size variable 𝑎d as input variables instead of the vertex positions Xd. Therefore, we define the

objective function as

𝑓obj. (Pd, 𝑎d) = 𝑓angle [gd(Pd; 𝑎d)], (S100)



where Pd is the set of independent parameters of the deployed meshes, defined by Equation (S60)

for an RS mesh or by Equation (S79) for a UV mesh.; 𝑎d is the size variable of the deployed mesh,

equal to the half side length of a cube 𝐿 or the radius of a sphere 𝑅, or representing the array of the

major radius and minor radius of a torus (𝑅, 𝑟); gd represents the map from the 2D parameters to

the spatial vertex positions given by Equation (S64) for deployed RS meshes or by Equation (S83)

for deployed UV meshes.

Implementation. The optimization framework for the compatibility between the compact and

deployed configurations of an RS or UV mesh can be described in a unified form as

minimize
Pc,Pd,𝑎c

𝑓obj. (Pd, 𝑎d) subject to



𝑓comp. (Pc,Pd, 𝑎c, 𝑎d, c) = 0,

fsym. (Pc,Pd) = 0,

fpos. (Pc,Pd) ≤ 0,

fcont. (Pc,Pd) ≤ 0.

(S101)

We use the sequential quadratic programming (SQP) algorithm to solve the optimization problem

given by Equation (S101). In our calculation, the crease assignment is prescribed to have the same

types of symmetry. The RS meshes are mirror symmetric with respect to three orthogonal planes,

with the creases assigned as

𝑐𝑖, 𝑗 ,𝑘 =


+1, |𝑖 − 𝑗 | < 𝑁/2,

−1, |𝑖 − 𝑗 | ≥ 𝑁/2.
(S102)

The UV meshes are mirror symmetric with respect to the horizontal plane and rotational symmetric

with respect to the vertical axis, with the creases assigned as

𝑐𝑖, 𝑗 =


+1, even 𝑖 + 𝑗 ,

−1, odd 𝑖 + 𝑗 .

(S103)

The parameters of regular patterns (text S3) serve as the initial values of the optimization variables

Pc and Pd. To generate initial compact meshes, the initial values of Pc are given by Equation (S31)

for an RS mesh or by Equation (S37) for a UV mesh. To generate initial deployed meshes, we

substitute the parameter 𝜉 = 0.5𝜋 to Equation (S36) for an RS mesh or to Equation (S43) for a UV

mesh. We fix the size of the deployed meshes with 𝑎d = 1 for an RS mesh or ad = (1, 0.5) for a UV

mesh. The initial size of the compact meshes is specified as 𝑎c = 1/
√

2 for an RS mesh or 𝑎c = 1



for a UV mesh. In the objective function, the reference opening angles are specified to be a constant

𝜔̄d-RS,𝑛 = 𝜔 = 0.5𝜋 (𝑛 =1, 2,..., 6) for an RS mesh or a constant 𝜔̄d-UV,𝑛 = 𝜔 = 0.4𝜋 (𝑛 =1, 2, 3, 4)

for a UV mesh.

S5 Analysis on kinematic indeterminacy

Rotation axis of hinges. A hinge should guide two panels to rotate around the hinge axis. The axis

is fixed with respect to the frame of reference of each panel. In other words, the hinges are attached

to the panels. We recall that each quadrilateral panel is divided into two triangles according to the

crease assignment (𝑐 = +1 or −1). We suppose the panel vertices are indexed counterclockwise

by 1, 2, 3, 4. For 𝑐 = +1, the two triangles connect vertices 1, 2, 3 and 1, 3, 4 respectively. For

𝑐 = −1, the two triangles connect vertices 1, 2, 4 and 2, 3, 4 respectively. Besides, the panels

are distinguished by their clockwise (even 𝑖 + 𝑗) or counterclockwise rotation (odd 𝑖 + 𝑗) upon

deployment. On these grounds, we summarize the attachment patterns in Figure S12A. We can see

that each triangle has two attached hinges and each quadrilateral panel has four hinges in total. The

different rotation directions and different crease assignments lead to different attachment patterns

involving the hinges and the panels. The attachment rules above are applicable to the quadrilateral

panels for both the RS and the UV meshes. In addition, we recall that the UV meshes have some

panels that are originally triangles ( 𝑗 = 1 or 𝑁). These triangular panels can also be classified

into two types according to their clockwise (even 𝑖 + 𝑗 and 𝑗 = 1, 𝑁) or counterclockwise (odd

𝑖 + 𝑗 and 𝑗 = 1, 𝑁) rotation upon deployment. In analogy to the quadrilateral panels, we give the

attachment rules on these triangular panels, as shown in Figure S12B. We can see that there are

three hinges in total for an original triangular panel. Altogether, in the panel-hinge system, each

hinge connects two (either divided or original) triangles at the common vertex. The deployment of

an ori-kiri assemblage requires the panels to rotate around the hinge axis from the compact state

to the compatible deployed state. We can calculate the direction of the rotation axis for each hinge

based on the compact and deployed configurations.

As shown in Figure S12C, at the compact state, two triangular panels have a common vertex

a and each has two more vertices b, c, and d, e, respectively. From the compact state to the

compatible deployed state, the triangle abc undergoes a rigid-body motion with its vertices moving

to ã, b̃, c̃. The triangle ade follows the same rigid-body motion and additionally rotates around



the common vertex a with respect to the triangle abc, with the vertices a, d, e moving to ã, d̃,

ẽ, respectively. The rotation matrix can be determined by the vertex locations of the compact and

deployed configurations. First, we calculate the basis vectors of the local coordinate systems fixed

on the panels of the compact and deployed configurations. On the triangle abc, we set up a local

coordinate system with basis vectors m1, m2, m3 as

m1 =
c − a
∥c − a∥ , m3 =

(b − a) × m1
∥(b − a) × m1∥

, m2 =
m3 × m1
∥m3 × m1∥

. (S104)

On the triangle ade, we set up a local coordinate system with basis vectors n1, n2, n3 as

n1 =
d − a
∥d − a∥ , n3 =

n1 × (e − a)
∥n1 × (e − a)∥ , n2 =

n3 × n1
∥n3 × n1∥

. (S105)

On the deformed triangle ãb̃̃c, we set up a local coordinate system with basis vectors m̃1, m̃2, m̃3

as

m̃1 =
c̃ − ã
∥̃c − ã∥ , m̃3 =

(b̃ − ã) × m̃1

∥(b̃ − ã) × m̃1∥
, m̃2 =

m̃3 × m̃1
∥m̃3 × m̃1∥

. (S106)

On the deformed triangle ãd̃̃e, we set up a local coordinate system with basis vectors ñ1, ñ2, ñ3 as

ñ1 =
d̃ − ã
∥d̃ − ã∥

, ñ3 =
ñ1 × (̃e − ã)
∥ñ1 × (̃e − ã)∥ , ñ2 =

ñ3 × ñ1
∥ñ3 × ñ1∥

. (S107)

Then, we calculate the rotation matrix R̃ under the basis vectors m1, m2, m3 as

R̃ =


m̃1 · ñ1 m̃1 · ñ2 m̃1 · ñ3

m̃2 · ñ1 m̃2 · ñ2 m̃2 · ñ3

m̃3 · ñ1 m̃3 · ñ2 m̃3 · ñ3



m1 · n1 m1 · n2 m1 · n3

m2 · n1 m2 · n2 m2 · n3

m3 · n1 m3 · n2 m3 · n3


−1

. (S108)

The matrix R̃ transforms the triangle ade to ãd̃̃e with respect to the material coordinate frame fixed

on the triangle abc. On the undeformed (compact) configuration, the material coordinate frame has

the basis vectors m1, m2, m3. On the deformed (deployed) configuration, the material coordinate

frame has the basis vectors m̃1, m̃2, m̃3. Since the compact and the deployed configurations have

been optimized to be compatible, the triangle abc only undergoes rigid-body motion to ãb̃̃c, so

does the triangle ade to ãd̃̃e. As a result, the matrix R̃ performs the relative rotation of the triangle

ãd̃̃e with respect to the triangle ãb̃̃c. Furthermore, the relative rotation in the matrix form R̃ can

also be characterized by the rotation around a rotation axis ñ by a rotation angle 𝛾̃. We can calculate

𝛾̃ and ñ by

𝛾̃ = arccos

(
𝑅11 + 𝑅22 + 𝑅33 − 1

2

)
, (S109)



ñ =
1

2 sin 𝛾
[(𝑅32 − 𝑅23)m̃1 + (𝑅13 − 𝑅31)m̃2 + (𝑅21 − 𝑅12)m̃3] . (S110)

The vector ñ is expressed under the local basis vectors m̃1, m̃2, m̃3 on the deployed configuration.

Besides, the rotation axis can also be written as

n =
1

2 sin 𝛾
[(𝑅32 − 𝑅23)m1 + (𝑅13 − 𝑅31)m2 + (𝑅21 − 𝑅12)m3] . (S111)

The vector n is expressed under the local basis vectors m1, m2, m3 on the compact configuration.

The vectors n and ñ represent the rotation axis of the same hinge on the compact and the deployed

configurations, respectively. The local expressions benefit the analysis of kinematic indeterminacy

below because the hinges are actually attached to the panels when the ori-kiri assemblages transit

between the compatible configurations.

Kinematic indeterminacy. To investigate the mobility of the ori-kiri assemblages, we use a surrogate

truss model in which the panels are replaced by bars alongside the edges and creases. Figure S11A

shows the truss model of a deployed spherical RS mesh. We denote the number of bars by 𝑁bar and

the number of nodes by 𝑁node. For an 𝑁 × 𝑁 × 6 RS mesh (either compact or deployed), we have

𝑁bar = 30𝑁2 and 𝑁node = 12𝑁2 + 4𝑁 . For an 𝑀 × 𝑁 UV mesh (either compact or deployed), we

have 𝑁bar = 𝑀 (5𝑁 − 4) and 𝑁node = 𝑀 (2𝑁 − 1). We denote the position of a node 𝑖 by x𝑖. The

node 𝑖 has three degrees of freedom, that is, its infinitesimal displacement dx𝑖. We aim to calculate

the degree of kinematic indeterminacy of the bar system under infinitesimal displacements. To

this end, we impose the first-order inextensibility constraint to the bars. Consider a bar connecting

node 𝑖 and 𝑗 as shown in Figure S11B. The length of the bar can be calculated by 𝑙𝑖 𝑗 = ∥x𝑖 − x 𝑗 ∥.

Then we equate the first-order differential of the bar length d𝑙𝑖, 𝑗 to zero to obtain the first-order

inextensibility constraint

(x𝑖 − x 𝑗 ) · (dx𝑖 − dx 𝑗 ) = 0, (S112)

This constraint can be applied to all bars and be gathered in the matrix form as

Bbar · dx = 0, (S113)

where Bbar is the 𝑁bar×3𝑁node constraint matrix, and dx is the vector of infinitesimal displacements

for all nodes.

To simulate the axial rotation guided by the hinges, we need to additionally impose constraints

to the relative motion of the nodes constituting adjacent triangular panels. We denote the number of



hinges by 𝑁hinge. For an 𝑁×𝑁×6 RS mesh (either compact or deployed), we have 𝑁hinge = 12𝑁2−4𝑁 .

For an 𝑀 × 𝑁 UV mesh (either compact or deployed), we have 𝑁hinge = 𝑀 (2𝑁 − 1). Figure S11C

shows the hinge on the node 𝑖 that connects the triangle 𝑖 𝑗 𝑘 and the triangle 𝑖𝑙𝑚. On the triangle

𝑖 𝑗 𝑘 , we set up a local coordinate system with basis vectors m1, m2, m3 as

m1 =
x𝑘 − x𝑖
∥x𝑘 − x𝑖∥

, m3 =
(x 𝑗 − x𝑖) × m1

∥(x 𝑗 − x𝑖) × m1∥
, m2 =

m3 × m1
∥m3 × m1∥

. (S114)

Under the local basis vectors m1, m2, m3, we give the direction vector of the rotation axis ñ by

ñ = 𝑛̃1m1 + 𝑛̃2m2 + 𝑛̃3m3, (S115)

where the components 𝑛̃1, 𝑛̃2, 𝑛̃3 are constants that do not vary with the infinitesimal displacements

dx𝑖, dx 𝑗 , dx𝑘 . This means that the direction of the rotation axis is fixed on the triangle 𝑖 𝑗 𝑘 . In

addition, since the hinge guides the axial rotation of both the triangle 𝑖 𝑗 𝑘 and the triangle 𝑖𝑙𝑚, the

direction of the rotation axis should also be fixed on the triangle 𝑖𝑙𝑚. To formulate this constraint, we

calculate the angles included between the axis ñ and two linearly independent vectors on the triangle

𝑖𝑙𝑚, say, 𝛼 and 𝛽 as shown in Figure S11C. The angle 𝛼 corresponds to the vector t̃1 = x𝑙 − x𝑖,

which can be expressed with the local basis vectors m1, m2, m3 by

t̃1 = [(x𝑙 − x𝑖) · m1]m1 + [(x𝑙 − x𝑖) · m2]m2 + [(x𝑙 − x𝑖) · m3]m3, (S116)

and the angle 𝛽 corresponds to the vector t̃2 = x𝑚 − x𝑖, which can be expressed by the local basis

vectors m1, m2, m3 as

t̃2 = [(x𝑚 − x𝑖) · m1]m1 + [(x𝑚 − x𝑖) · m2]m2 + [(x𝑚 − x𝑖) · m3]m3. (S117)

Then the expressions of 𝛼 and 𝛽 can be written as

𝛼 = arccos
(
ñ · t̃1

∥̃t1∥

)
, 𝛽 = arccos

(
ñ · t̃2

∥̃t2∥

)
. (S118)

Finally, the constraints for the axial rotation can be expressed by the first-order differentials of 𝛼

and 𝛽 as
𝜕𝛼

𝜕x𝑖
· dx𝑖 +

𝜕𝛼

𝜕x 𝑗

· dx 𝑗 +
𝜕𝛼

𝜕x𝑘

· dx𝑘 +
𝜕𝛼

𝜕x𝑙
· dx𝑙 +

𝜕𝛼

𝜕x𝑚
· dx𝑚 = 0,

𝜕𝛽

𝜕x𝑖
· dx𝑖 +

𝜕𝛽

𝜕x 𝑗

· dx 𝑗 +
𝜕𝛽

𝜕x𝑘

· dx𝑘 +
𝜕𝛽

𝜕x𝑙
· dx𝑙 +

𝜕𝛽

𝜕x𝑚
· dx𝑚 = 0.

(S119)



These constraints can be applied to all the hinges and be gathered in the matrix form as

Bhinge · dx = 0, (S120)

in which Bhinge is the 2𝑁hinge × 3𝑁node constraint matrix, and dx is the vector of infinitesimal

displacements for all nodes.

Now we can calculate the degree of kinematic indeterminacy of the surrogate truss model to

quantify the mobility of the ori-kiri assemblages of which the panels are connected by hinges at the

common vertices. To this end, we write the kinematic equation of the truss model as

B · dx =


Bbar

Bhinge

 · dx = 0, (S121)

where the kinematic matrix B consists of both the inextensibility constraints and the axial rotation

constraints. Then the degree of kinematic indeterminacy of the truss model (denoted by 𝑏) can be

calculated by

𝑏 = 3𝑁node − rank(B) − 6. (S122)

Furthermore, to show the necessity of replacing spherical joints by hinges, we calculate the following

degree of kinematic indeterminacy

𝑏′ = 3𝑁node − rank(B′) − 6, (S123)

where the kinematic matrix B′ consists of all the rows from Bbar and part of the rows from Bhinge.

Therefore, 𝑏′ represents the mobility of the ori-kiri assemblages with mixed ball and revolute joints

at the vertices. Specifically, if B′ = Bbar, 𝑏′ represents the mobility of the ori-kiri assemblages with

full spherical joints.

S6 Energy landscapes upon deployment

Energy formulation. We assume that the surrogate truss model has two sources of elastic energy,

the stretching energy of the bars and the off-axial-rotation energy at the hinges. As shown in Figure

S13A, the stretching energy is induced from the linear deformation of the bars. Supposing that the

total number of bars is 𝑁bar in the truss model, we can write the stretching energy 𝐸S as

𝐸S(X) = 1
2

𝑁bar∑︁
𝑛=1

[𝑘S,𝑛 (𝑠′𝑛 − 𝑠𝑛)2], (S124)



where 𝑠𝑛 is the original length of the 𝑛-th bar; 𝑠′𝑛 is the deformed length of the 𝑛-th bar; 𝑘S,𝑛 is the

stiffness of the 𝑛-th bar; X is the set containing all the 3D vertex positions of the deformed truss.

The original length 𝑠𝑛 is determined by the geometry of a given ori-kiri assemblage. The deformed

length 𝑠′𝑛 can be calculated with the vertex positions X.

The off-axial-rotation energy is induced from the restoring force resisting the relative off-axial

rotation of adjacent panels. As shown in Figure S13B, we consider two triangles connected by

a hinge at their common vertex a. From the compact state to the compatible deployed state, the

triangles abc and ade undergo rigid-body motion and relative rotation, moving to ãb̃̃c and ãd̃̃e,

respectively. Following Equations (S104)–(S111), we can set up the local coordinate frames on the

triangles abc, ãb̃̃c, ade, and ãd̃̃e, respectively. Then we can calculate the rotation matrix R̃ and the

rotation axis ñ. We write the rotation axis ñ as

ñ = 𝑛̃1m̃1 + 𝑛̃2m̃2 + 𝑛̃3m̃3, (S125)

where the basis vectors m̃1, m̃2, m̃3 are attached on the triangle ãb̃̃c. The components 𝑛̃1, 𝑛̃2, 𝑛̃3 are

prescribed according to the vertex positions a, b c, d, e and ã, b̃ c̃, d̃, ẽ, which are all known position

vectors for a given ori-kiri assemblage that is optimized to have two compatible configurations.

Now we investigate an intermediate configuration other than the compact or the compatible

deployed configuration. We suppose the vertices move to new positions a′, b′, c′, d′, e′ at the

intermediate state. If we replace the vertices ã, b̃, c̃, d̃, ẽ by a′, b′, c′, d′, e′ in Equations (S104)–

(S108), we can obtain the local basis vectors m′
1, m′

2, m′
3 on the triangle a′b′c′, the local basis

vectors n′
1, n′

2, n′
3 on the triangle a′d′e′, and the rotation matrix R′ for the intermediate configuration.

Here, the matrix R′ transforms the triangle ade to the triangle a′d′e′ with respect to the material

coordinate frame attached on the triangle abc. On the undeformed (compact) configuration, the

material coordinate frame has the basis vectors m1, m2, m3 on the triangle abc. On the deformed

(intermediate) configuration, the material coordinate frame has the basis vectors m′
1, m′

2, m′
3 on the

triangle a′b′c′. It is worth noting that the intermediate configuration is not necessarily compatible

with the compact configuration. In other word, the triangles abc and ade can undergo non-rigid

deformation and evolve to a′b′c′ and a′d′e′, respectively. Consequently, the material coordinate

frames on the triangles a′b′c′ and a′d′e′ can be disturbed by the non-rigid deformation. Under this

circumstance, there is no straightforward way to characterize the relative rotation of the triangle



ade with respect to the triangle abc. To avoid this issue, we assume the panels of the ori-kiri

assemblages are stiff enough such that the bars can only have small extension or compression.

Under this assumption, the matrix R′ can approximately characterize the relative rotation between

the triangle a′d′e′ and the triangle a′b′c′. Then we can calculate the rotation axis n′ and the rotation

angle 𝛾′ corresponding to the matrix R′ according to Equations (S109) and (S111). We write the

rotation axis n′ as

n′ = 𝑛′1m′
1 + 𝑛′2m′

2 + 𝑛′3m′
3. (S126)

We note that the rotation axis n′ is a virtual axis that reflects the direction in which the triangles

a′b′c′ and a′d′e′ rotate with respect to each other. We denote the axis of the physical hinge by ñ′ at

the intermediate state. Then we can express ñ′ as

ñ′ ≈ 𝑛̃1m′
1 + 𝑛̃′2m2 + 𝑛̃3m′

3, (S127)

where the basis vectors m′
1, m′

2, m′
3 are attached on the triangle a′b′c′. The components of ñ′ are

approximately the same as the hinge axis ñ on the triangle ãb̃̃c because we have assumed the bars

can only have small deformation. Then, at the intermediate state, if we find n′ = ñ′, that is, 𝑛′1 = 𝑛̃1,

𝑛′2 = 𝑛̃2, 𝑛′3 = 𝑛̃3, we can say that the relative rotation between the triangles a′b′c′ and a′d′e′ is

around the axis of the physical hinge. The reason is that the rotation axis of real motion ñ′ coincides

with the rotation axis of the physical hinge ñ. In this case, there is no off-axial-rotation energy.

Otherwise, if we find n′ ≠ ñ′, the relative rotation between the triangles a′b′c′ and a′d′e′ is off the

axis of the physical hinge ñ, and the off-axial-rotation energy is induced.

To characterize the off-axial-rotation energy, we use 𝛾′n′, the vector pointing towards the

rotation axis n′ and having the length equal to the rotation angle 𝛾′, to represent the total relative

rotation between the triangles a′b′c′ and a′d′e′. To extract the off-axial rotation from the total

relative rotation, we decompose the 𝛾′n′ into

𝛾′n′ = 𝛾ñ′ + 𝛿ñ′
⊥, (S128)

where

𝛾 = 𝛾′n′ · ñ′, (S129)

and ñ′
⊥ is the unit vector that is perpendicular to the hinge axis ñ′. In general, the rotation around



an axis n by an angle 𝛼 can be expressed by the matrix function R(n, 𝛼) as

R(n, 𝛼) = I cos𝛼 + (1 − cos𝛼)n ⊗ n − 𝜺 · n sin𝛼, (S130)

where I is the 3× 3 identity matrix and 𝜺 is the 3× 3× 3 permutation tensor whose components are

given by the 3D Levi-Civita symbol. We assume 𝛿 is a quantity that is much smaller than 𝜋, then

we can obtain

[R(ñ′
⊥, 𝛿)R(ñ′, 𝛾)] [R(n′, 𝛾′)]−1 = I +𝑂 (𝛿), (S131)

where 𝑂 (𝛿) is a small quantity of the same order of magnitude as 𝛿. Thus, the total relative rotation

between the triangles a′b′c′ and a′d′e′ can be decomposed into the combination of the two successive

rotations around the hinge axis ñ′ and around the perpendicular axis ñ′
⊥, respectively. The off-axial-

rotation energy can be considered as the result of the second rotation, and the corresponding rotation

angle 𝛿 can be obtained by

𝛿 = ∥𝛾′n′ − (𝛾′n′ · ñ′)ñ′∥. (S132)

We use a linear rotational spring of stiffness 𝑘R to model the source of the restoring force induced

by the off-axial rotation, then the off-axial-rotation energy can be formulated as 𝑘R𝛿
2/2. Supposing

the total number of hinges is 𝑁hinge in the truss model, we can write the total off-axial-rotation

energy 𝐸R as

𝐸R(X) = 1
2

𝑁hinge∑︁
𝑚=1

(𝑘R𝛿
2
𝑚), (S133)

where 𝛿𝑚 is the off-axial-rotation angle at the 𝑚-th hinge; X is the set containing all the 3D vertex

positions of the deformed truss. Finally, we can write the total elastic energy of the truss model as

𝐸 (X) = 1
2

𝑁bar∑︁
𝑛=1

[𝑘S,𝑛 (𝑠′𝑛 − 𝑠𝑛)2] + 1
2

𝑁hinge∑︁
𝑚=1

(𝑘R𝛿
2
𝑚). (S134)

We assume a constant axial rigidity 𝐸𝐴 for all the bars, then we have 𝑘S,𝑛 = 𝐸𝐴/𝑠𝑛. We

introduce a characteristic length ℓc to nondimensionalize the deformation energy. Then, the scaled

stretching energy and rotational energy are expressed by

𝐸̄S(X) = 𝐸S(X)/(𝐸𝐴ℓc) and 𝐸̄R(X) = 𝐸R(X)/(𝐸𝐴ℓc), (S135)

respectively. Finally, we obtain the total scaled energy:

𝐸̄T(X) = 𝐸̄S(X) + 𝐸̄R(X). (S136)



We assume 𝑘R = 𝑐R𝐸𝐴ℓc, where 𝑐R is a coefficient adjusting the proportion of 𝐸̄S and 𝐸̄R in 𝐸̄T.

The coefficient can be expressed in terms of the stiffness by 𝑐R = 𝑘R/(𝑘S,𝑛𝑠𝑛ℓc). For a compact

cube with an RS mesh, we set ℓc with the half length of the cube 𝐿. For a compact sphere with

either an RS or an UV mesh, we set ℓc with the radius of the sphere 𝑅. By trial and error, we assume

that 𝑐R = 0.1, such that we can obtain both small off-axial-rotation angles and small bar strains (see

Figure S14), which are consistent with our assumptions in the derivation above.

Optimization for energy landscapes. To obtain the energy landscapes upon deployment of the

ori-kiri assemblages, we divide the deployment process into successive steps and minimize the

energy 𝐸 (X) of the truss model in each step. To guide the deployment from the compact state to the

compatible deployed state, we select some control nodes xctrl. and prescribe their positions upon

deployment. We refer to the nodes other than the control nodes as the free nodes xfree. The control

nodes xctrl. and the free nodes xfree constitute all the elements in the set X. We denote the number

of deployment steps by 𝑁step. At the compact state, the positions of the control and the free nodes

are denoted by xc-ctrl. and xc-free, respectively. At the compatible deployed state, the positions of the

control nodes and the free nodes are denoted by xd-ctrl. and xd-free, respectively. Then the energy

landscapes can be obtained by implementing the procedure as follows.

1. Give the step number 𝑁step and the select the control nodes xctrl..

2. At each step 𝑘 = 1, 2, ..., 𝑁step, specify the spatial coordinates of the control nodes as

xctrl. (𝑘) = (1 − 𝑘/𝑁step)xc-ctrl. + (𝑘/𝑁step)xd-ctrl..

3. At each step 𝑘 = 1, 2, ..., 𝑁step, fix the control nodes xctrl. (𝑘) and optimize the spatial coordi-

nates of the free nodes xfree to minimize the scaled energy 𝐸̄ (X).

At each step 𝑘 , we initialize the free nodal positions, denoted by xfree.,in(𝑘), with the optimal nodal

positions at the (𝑘 − 1)-th step, denoted by xfree.,opt. (𝑘 − 1). The only exception is for the first step:

to trigger the deployment of the truss model, we disturb all the compact free nodes towards the

deployed configuration. Therefore, the initial nodal positions xfree.,in(𝑘) can be expressed as

xfree.,in(𝑘) =


(1 − 1/𝑁step)xc-free + (1/𝑁step)xd-free, 𝑘 = 1,

xfree.,opt. (𝑘 − 1), 𝑘 ≥ 2.
(S137)



It is worth noting that the selection of the control nodes can affect the results of the deployment

simulation. We select the control nodes based on the following considerations. First, the control

nodes should appear as pairs to characterize the opening trend of the slits. Second, the control nodes

should travel a relatively long distance compared to the free nodes to effectively distinguish each

step of the deployment. Third, the number of control nodes should be as small as possible to avoid

excessively increasing the overall stiffness of the truss model. We select different control nodes for

different ori-kiri assemblages as follows:

for 𝑁 × 𝑁 × 6 RS meshes of compact cubic shape:

xctrl. ∈ {x𝑁/2+1,𝑁/2+1,𝑘,1, x𝑁/2+1,𝑁/2,𝑘,4 |𝑘 = 1, 2, ..., 6};

for 𝑁 × 𝑁 × 6 RS meshes of compact spherical shape:

xctrl. ∈



x1,1,2,2, x1,1,4,2, x1,1,6,1, x1,1,5,1,

x𝑁,1,2,1, x𝑁,1,4,1, x𝑁,1,6,2, x𝑁,1,5,2,

x𝑁,𝑁,2,4, x𝑁,𝑁,4,4, x𝑁,𝑁,6,3, x𝑁,𝑁,5,3,

x1,𝑁,2,3, x1,𝑁,4,3, x1,𝑁,6,4, x1,𝑁,5,4,


;

for 𝑀 × 𝑁 UV meshes of compact spherical shape:

xctrl. ∈ {x𝑖,𝑁/2+1,1, x𝑖,𝑁/2,4 |𝑖 = 1, 3, ..., 𝑀}.
(S138)

We can see that the control nodes for a compact RS cube are located at the center of each of the six

faces, while the control nodes for a compact RS sphere are located at the corners of the six faces.

For a compact UV sphere, the control nodes are located at the outer circumference of the sphere.

We use the sequential quadratic programming (SQP) algorithm to solve the optimization prob-

lem at each step of the deployment. To accelerate the convergence of the optimization algorithm, we

impose the constraints of symmetry to the nodal positions which are consistent with the symmetry

of the ori-kiri assemblages. The energy curves (see Figures 3D, 3E, 3F in the main text and movies

S1, S3, S5) stand for the evolution of the dimensionless energy 𝐸̄ given by Equation (S136) with

respect to the pseudo time 𝑡 in the deployment process. The pseudo time 𝑡 is simply defined by

scaling the step number 𝑘 to 𝑡 = 𝑘/𝑁step. Finally, we note that the optimization results are affected

by the relative location of the compact and compatible deployed configurations, because the bound-

ary conditions for the minimum energy problem are given by the positions of the control nodes,

which move from their initial locations on the compact configuration to the final locations on the



compatible deployed configuration step by step. To eliminate the effect of rigid-body motion on the

deployment simulation, we place the compact and compatible deployed configurations in the same

coordinates system, such that the centroids of the enclosed surfaces coincide with each other.
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(D) (E) (F)

Figure S1: RS and UV meshes that enclose different surfaces. (A) The compact RS mesh that

encloses the cube. (B) The compact RS mesh that encloses a sphere. (C) The compact UV mesh

that encloses a sphere. (D) The deployed RS mesh that encloses the cube. (E) The deployed RS

mesh that encloses a sphere. (F) The deployed UV mesh that encloses a torus.
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Figure S2: Faces and nodes of the RS mesh. (A) and (B) The cubic RS mesh and its developed

pattern at (A) the compact state and (B) the deployed state. The continuous and discontinuous

intersections of the six faces are highlighted in red and green, respectively. (C) The global indices

of the six faces, eight vertices, and sixteen edges. (D) The local indices of the four edges and four

vertices for each face.
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Figure S3: Regular RS-parameter meshes and the corresponding RS meshes. (A) Compact RS-

parameter mesh, which can generate (B) a compact cubic RS mesh and (C) a compact spherical RS

mesh. (D) Deployed RS-parameter mesh with uniform opening angles 𝜋/3, which can generate (E)

the deployed cubic RS mesh and (F) the deployed spherical RS mesh. (G) Deployed RS-parameter

meshes with uniform opening angles 𝜋/2, which can generate (H) the deployed cubic RS mesh and

(I) the deployed spherical RS mesh.
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Figure S4: Parametrization of a point 𝑃 on different closed surfaces. (A) The cube with RS

mesh. (B) The sphere with RS mesh. (C) The sphere with UV mesh. (D) The torus with UV mesh.
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Figure S5: Regular RS-parameter meshes. (A) The compact RS-parameter mesh. (B) The de-

ployed RS-parameter mesh. (C) Geometric notations of an obliquely placed square on the deployed

RS-parameter mesh. (D) Indices of cells and nodes on the compact RS-parameter mesh. (E) Indices

of cells and nodes on the deployed RS-parameter mesh.



(A) (B)

1 1 1 1 2

4
1 1 1 2

4
1 1 1 2

4

4

3

1

3

1

3

1 2

3

1,1,k 2,1,k 3,1,k 4,1,k

1,2,k 2,2,k 3,2,k 4,2,k

1,3,k 2,3,k 3,3,k 4,3,k

1,4,k 2,4,k 3,4,k 4,4,k

Index of panel

Local index of interior vertex

Local index of boundary vertex

Local index of corner vertex

Figure S6: Interior vertices, boundary vertices, and corner vertices in the parameter space.

(A) The compact RS-parameter mesh. (B) The deployed RS-parameter mesh.



(A) (B) (C) (D)

𝑐𝑐 = +1 𝑐𝑐 = −1

Figure S7: Metrics of panels. (A) The quadrilateral panel with a crease connecting vertices 1 and

3. (B) The quadrilateral panel with a crease connecting vertices 2 and 4. (C) The triangular panel

that is degenerated from a quadrilateral with zero side length 𝑠1. (D) The triangular panel that is

degenerated from a quadrilateral with zero side length 𝑠3. The crease length 𝑠5 of a triangular panel

is considered to be zero.
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Constant reference opening angle:
𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔3 = 𝜔𝜔4 = 𝜔𝜔5 = 𝜔𝜔6 = 𝜔𝜔

Constant reference opening angle:
𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔3 = 𝜔𝜔4 = 𝜔𝜔

Figure S8: Reference opening angles of the RS and UV meshes. (A) RS mesh on a cube. (B)

RS mesh on a sphere. The reference opening angles 𝜔2, 𝜔3, and 𝜔5 are at the opposite locations

(backside) with respect to the angles 𝜔4, 𝜔1, and 𝜔6. (C) UV mesh on a torus. The reference

opening angles 𝜔3 and 𝜔4 are at the opposite locations (backside) with respect to the angles 𝜔1 and

𝜔2.



Non‐convexity Orientation‐reversingIntersection

Non‐convexity Orientation‐reversingIntersection

(A)

(B)

Figure S9: Valid (far left) and distorted (three on the right) cases of the planar quadrilaterals

in the parameter space. (A) The diagonal connects points 1 and 3. (B) The diagonal connects

points 2 and 4.



(A) (B)

Figure S10: Compactness of RS meshes. (A) The compact RS mesh that has no slits at the discon-

tinuous intersections. (B) The compact RS mesh that has slits at the discontinuous intersections.



(A) (B)

(C)

Figure S11: Kinematic constraints of the truss model. (A) The truss model of an ori-kiri

assemblage. For better visual effects, the panel faces enclosed by the bars are highlighted in gray.

(B) The constraint for inextensible bars. (C) The constraint for axial rotation.



(A)

(B)
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Figure S12: Hinges that are attached to the panels. (A) Quadrilateral panels (divided into two

triangles by a crease) and the locations where the hinges are attached. (B) Triangular panels and

the locations where the hinges are attached. (C) The hinge guides the relative rotation between two

panels in such a way that its orientation is fixed with respect to the frame of reference of each panel.
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Figure S13: Two sources of elastic energy of the truss model. (A) The stretching energy of bars.

(B) The off-axial-rotation energy at hinges.
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Figure S14: Geometric metrics evolving along the deployment path of the bistable ori-kiri

assemblages. (A–C) Shape morphing between a compact cube and a deployed sphere. (D–F)

Scaling between two spheres. (G–I) Shape morphing between a compact sphere and a deployed

cube. (J–L) Topology morphing between a compact sphere and a deployed torus. Each morphing

case includes: axial-rotation angle |𝛾 |ave. and off-axial-rotation angle |𝛿 |ave., absolute and averaged

for all hinges (B, E, H, K); positive bar strain 𝜀+ave. and negative bar strain 𝜀−ave., averaged for all

bars (C, F, I, L). Dashed lines represent data from models with increased number of panels, i.e.,

6 × 6 × 6 for (A–I) and 24 × 12 for (J–L).
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Figure S15: Regular UV-parameter meshes and the corresponding UV meshes. (A) Compact

UV-parameter mesh, which can generate (B) the compact spherical UV mesh. (C) Deployed UV-

parameter mesh which can generate (D) the deployed toric UV mesh. (E) Deployed UV-parameter

mesh with which can generate (F) another deployed toric UV mesh with different opening angles.
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Figure S16: Regular UV-parameter mesh. (A) Compact UV-parameter mesh. (B) Deployed

UV-parameter mesh. (C) Geometric notations of a quadrilateral cell and a triangle cell on the

deployed UV-parameter mesh. (D) Indices of the cells and nodes on the compact UV-parameter

mesh. (E)Indices of the cells and nodes on the deployed UV-parameter mesh.
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Figure S17: Interior vertices, boundary vertices, and corner vertices in the parameter space.

(A) The compact UV-parameter mesh. (B) The deployed UV-parameter mesh.



Movie S1. The deployment and energy landscape of bistable ori-kiri assemblages.

Movie S2. Shape morphing between a cube and a sphere.

Movie S3. Topology morphing between a sphere and a torus.

Movie S4. The deployment and energy landscape of bistable ori-kiri assemblages with increased

number of panels.

Movie S5. The deployment and energy landscape of bistable ori-kiri assemblages with irregular

shapes.
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