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E N G I N E E R I N G

Shape and topology morphing of closed surfaces 
integrating origami and kirigami
Xiangxin Dang, Shujia Chen, Ali Elias Acha, Lei Wu, Damiano Pasini*

A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty 
closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less 
constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morph-
ing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability 
that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around 
creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed 
surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale be-
tween spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. 
The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials 
with enclosed configurations.

INTRODUCTION
Shape morphing, the ability of an object to change shape in response 
to an external stimulus or control input (1,  2), is commonly ob-
served in natural organisms to achieve various functionalities. Like-
wise, in the synthetic world, shape morphing is pursued for the 
design of shape-shifting materials and multifunctional structures, 
such as hydrogels (2), shape memory alloys (3), living composites 
(4), liquid crystal elastomers (5), architected dielectric elastomers 
(6), and origami/kirigami structures (7). One of their common traits 
stems from their morphable attributes arising from either the base 
material or/and the material architecture, both contributing to de-
livering reconfigurability, large dimensional changes, foldability, 
and other morphing-driven functionalities. Previous research has 
so far focused on the transformation of shapes either from a flat 
state to a curved shape (8–11) or between distinct curved shapes 
(12, 13). These transformations are all characterized by open sur-
faces while morphing from an open surface to a closed surface has 
also been reported (14,  15). Morphing between closed surfaces, 
however, is now unexplored, yet it bears large scientific implications 
and practical applications, as described below.

In topology, a closed surface is a two-dimensional (2D) mani-
fold that has no infinitely distant points and has no boundary (16). 
Typical closed surfaces include the sphere and the torus, which are 
orientable in the 3D space with distinguishable interior and exte-
rior surfaces forming two-sided surfaces, and the non-orientable 
Klein bottle, which, on the other hand, is one-sided (17). In con-
trast, while not typically considered a standard mathematical 
term, open surface in physics often refers to a surface with a de-
fined boundary (18), such as a spherical cap (with one boundary) 
and cylindrical surface (with two boundaries). Closed surfaces 
have intrinsic characteristics that can offer advantages over open 
surfaces in various aspects. On the geometric front, for instance, 
the existence of a boundary implies that an open surface cannot 
seal off a volume, while an orientable closed surface can break the 
3D space into separate regions, an interior, and an exterior. On the 

mechanics front, a closed surface provides structural stiffness and 
stability by distributing internal forces more uniformly over the en-
tire geometry. A typical example is the “shear flow” in the closed 
cross section of a tube, which can resist torsion much more effec-
tively than its counterpart shear flow in an open cross section (19). 
On the application front, a closed surface can encapsulate contents 
within its volume, offering protection against external factors such 
as contaminants, radiation, or physical impact. The ability to mod-
el and predict the morphing of closed surfaces would enable the 
optimization of both structural and protective properties, benefit-
ing a diverse range of applications involving, for example, con-
trolled release of drugs (20), selective electromagnetic shielding 
(21), and responsive soft robotics (22). Despite the benefits sum-
marized above, morphing a closed surface appears more challeng-
ing than morphing an open surface. The main reason can be 
attributed to geometric characteristics. Intuitively, a closed surface 
is typically obtained by sewing the free boundaries of several open 
patches to create an enclosed volume. As a result, generating and 
controlling morphing in a closed surface requires the synchronous 
motion and evolution of the constituent patches so as to preserve 
the proper adjacency between them across the sewed boundaries, a 
requirement that imposes stricter constraints than morphing open 
patches separately.

Origami, the art of paper folding, and kirigami, paper cutting, 
offer elegant solutions for transforming flat sheets into curved open 
surfaces (23). They have been successfully applied to develop multi-
functional structures and metamaterials at various length scales 
(24, 25). Both origami and kirigami rely on patch rotations to gov-
ern their morphing kinematics, but in distinct ways. In origami, 
patch rotation occurs around a crease accommodated in the initial 
plane of a flat sheet, whereas, in kirigami, the rotation axes are out of 
the initial plane. Compared to origami, kirigami appears to enable 
shape changes of higher geometric complexity and have more po-
tential to be performed on originally curved surfaces (14, 26), due to 
the additional degrees of freedom (DOFs) introduced by their slits. 
On the other hand, origami is favored in cases where the precise 
control is required over the entire shape transformation (27), where-
as kirigami has to seek a trade-off between flexibility and controlla-
bility (28).
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Here, we harness the advantages of both origami and kirigami 
principles to tackle the challenging task of morphing closed surfaces 
and imparting bistability. To pursue a morphing platform with high 
capacity for geometric variation and low complexity for mechanical 
control, we propose a class of bistable ori-kiri material assemblages 
that can approximate distinct closed surfaces in both their compact 
and deployed configurations. In particular, our goal here is to gener-
ate bistable morphing between closed surfaces that are dissimilar in 
size (Fig. 1A), shape (Fig. 1B), and, unprecedentedly, topology (Fig. 
1C). The deployed configuration, despite its open slits, covers a 
closed surface as an inner space is enclosed and bounded by its pan-
els. These slits are comparable in size to the panels, allowing the pan-
els to span the overall closed shape. Based on this consideration, the 
slits are regarded as an essential component of the closed surface. 
The ori-kiri assemblages are geometrically constructed by triangular 
patches with edge connections and vertex connections (Fig. 1, right 
column). The geometric distribution of creases (i.e., diagonals) and 
slits (i.e., outer edges) is designed to preserve the congruence be-
tween corresponding panels in their compact and deployed states, 
with the vertices lying on a given closed surface. The panels can fold 
around their diagonal hinges (origami principle) and rotate at their 
vertices connected to the neighbor panels (kirigami principle) and, 
hence, realize the closed-surface morphing. Mechanically, the diag-
onal connections are realized by origami hinges that are nearly tan-
gent to the closed surfaces, while the vertex connections are realized 
by kirigami hinges that are nearly perpendicular to the closed sur-
faces. The bistable reconfiguration of the ori-kiri assemblages is 
guided by their origami hinges and kirigami hinges, each allowing 1 
DOF. Beyond the bistable material assemblages, we further propose 
a class of unitary-piece ori-kiri metamaterials with functionalities 
leveraging shape morphing and topology morphing.

RESULTS
Design strategy
We implement a two-stage process to design our ori-kiri material 
assemblages with the dual goal of attaining both geometrical com-
patibility and mechanical bistability. In the first stage, we treat the 
kirigami hinges as spherical joints (each with 3 DOFs) and optimize 
the distribution of the panel vertices of the ori-kiri material assem-
blages, seeking their geometric compatibility at two closed surfaces. 
This first stage produces an ori-kiri mechanism with multiple kine-
matic DOFs. In the second step, we determine the rotation axis of 
each kirigami hinge and freeze all the kinematic DOFs, such that 
each mechanism becomes a bistable material assemblage.

As a demonstration, we exemplify our two-stage platform through 
the shape morphing between a cube and a sphere. The key idea is to 
build two systems of quadrilateral panels—the vertices of one system 
on the cube and those of the other on the sphere—with identical 
number of panels and identical rules of vertex and edge connections 
(Fig. 2A). To apply the folding principle, each quadrilateral panel is 
divided into two triangular panels by a selected diagonal. The com-
mon edge of the two triangular panels can be seen as the crease of 
the quadrilateral panel. For the cube, we naturally adopt the regular 
checkerboard as the initial geometry for its six faces. The vertex 
connections are prescribed inside each face to make them rotating-
square (RS) mechanisms with assigned diagonals and on the intersec-
tions of the faces to make them synergistically deployable (text S1 
and figs. S1 and S2). We denote this system of triangles with their 
connections as a RS mesh. The deployed version of the RS mesh is 
generated by mapping deployed RS patterns onto the sphere (fig. 
S3). The consistency between the compact and deployed RS meshes 
is realized by the 2D parametrization of vertex locations on the 
closed surfaces (text S2 and fig. S4) and the deployment of the rotat-
ing squares in the parameter space (text S3 and fig. S5). The map 
from a planar parameter space to a general curved closed surface 
does not necessarily preserve sizes and shapes, yet it paves the way 
for moving the vertices within their surfaces.

Starting from two initial RS meshes, where the identical diago-
nals and connection rules for neighboring panels are prescribed, 
our first goal is to pursue congruence between the corresponding 
panels (i.e., geometrical compatibility) in the compact RS mesh on 
the cube and deployed RS mesh on the sphere (Fig. 2C). To this 
end, the first-stage design adopts spherical joints for vertex connec-
tions of panels and optimizes panel vertex locations through the 
following formulation

where Pc and Pd are the set of vertex-location parameters of the 
compact and deployed RS meshes, respectively (fig. S6); ac is the size 
of the compact configuration, equal to the half side length of the 
cube; ad is the size of the deployed configuration, equal to the radius 
of the sphere; and c is the array of diagonal assignment. For the ex-
ample in Fig. 2A, the components of c are given by

min
Pc,Pd,ac

fobj.
�
Pd, ad

�
s. t.

⎧
⎪⎪⎨⎪⎪⎩
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�
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�
=0
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�
Pc,Pd

�
=0
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�
Pc,Pd

�
≤0
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�
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�
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(1)

ci,j,k =

{
+1, ∣ i− j ∣ <2

−1, ∣ i− j ∣ ≥2
(2)

A

B

C

Scaling

Shape morphing

Topology morphing

Fig. 1. Three types of closed-surface morphing (left column) and their concep-
tual realizations with ori-kiri assemblages (right column). (A) Scaling between 
spheres of dissimilar radius. (B) Shape morphing between sphere and cube. (C) To-
pology morphing between sphere (genus-0) and torus (genus-1).
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where the subscripts indicate the quadrilateral on the ith column 
and jth row of the kth face of the RS mesh, for i, j = 1,2,3,4 and 
k = 1, 2, … , 6. The entries +1 and −1 represent the major and mi-
nor diagonals, respectively, for each quadrilateral composed of two 
edge-connected triangular panels (fig. S7).

While the detailed formulation of the objective and constraint 
functions are given in text S4, here, we describe each of them briefly. 

The objective function fobj. controls the degree of deployment of the 
ori-kiri assemblage with a reference opening angle ω (fig. S8). The 
compatibility constraint function fcomp. controls the isometry of 
the compact and deployed configurations. To quantify the compat-
ibility, we define the following metric function

fmetric

(
Xc,Xd, c

)
=

1

Ne

Ne∑
k=1

(
sc,k− sd,k

)2
(3)

A

C

Stage I. Optimize nodal coordinates
to satisfy geometrical compatibility

Initial guess for the closed cube
and deployed sphere

Isometric shape
morphing

E

G

B

D

F

H

Isometric topology
morphing

Bistable shape
morphing

Bistable topology
morphing

Revolute joint Bar

Spherical joint BarSSpherical joint BarS

Revolute joint Bar

Initial guess for the closed sphere
and deployed torus

Stage II. Adding rotational constraints
to induce global bistability

10 cm 10 cm

p
ployed torus

topology
hing

Bar

Fig. 2. Two-stage design of bistable ori-kiri assemblages with features of shape morphing and topology morphing. (A and B) Initial mesh, (C and D) the first design 
stage to obtain geometric compatibility, and (E and F) the second design stage to obtain mechanical bistability for the shape morphing between a cube and a sphere [(A), 
(C), and (E)] and the topology morphing between a sphere and a torus (B, D, and F). (G) 3D printed shape-morphing ori-kiri assemblage: compact cube (left) and deployed 
sphere (right). Inset: Thin metal rods. (H) 3D printed topology-morphing ori-kiri assemblage: compact sphere (left) and deployed torus (right). Inset: Thick screws and nuts.
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where sc,k and sd,k are the kth edge lengths of the compact and de-
ployed configurations, respectively; and Xc and Xd are the vertex 
positions of the compact and deployed configurations, respectively. 
The summation goes through all the Ne edges. However, fmetric can-
not be directly used in the optimization formulation because it does 
not involve the shapes of the target morphing surfaces. The compat-
ibility constraint function fcomp. should receive the parameters Pc 
and Pd and the size variables ac and ad as input instead of the vertex 
positions Xc and Xd. To this end, we define the constraint function 
for compatibility as

The characteristic length �d is determined by the size of the de-
ployed configuration. Specifically, the deployed sphere of radius ad 
defines �d = 2πad ∕N. For the compact cube, the map Xc

(
Pc; ac

)
 is 

expressed by

For the deployed sphere, the map Xd

(
Pd; ad

)
 is expressed by

It is worth noting that the index k denotes the six different faces on 
the RS meshes. The explicit expressions of the functions gcube−RS and 
gsphere−RS are given in text S2. In addition to fcomp., we have some 
other constraint functions that confine the vertex distributions on 
the ori-kiri assemblages. The symmetry constraint function fsym. ap-
plies three orthogonal planes of mirror symmetry to the compact 
and deployed RS meshes with the goal of providing a better regular-
ity of the panels in the optimized RS meshes. The position constraint 
function fpos. restricts the relative positions of vertices to avoid dis-
tortion of the optimized RS meshes, including non-convexity of 
panels, intersection of edges, and orientation reversal of panels (fig. 
S9). The continuity constraint function fcont. aligns the correspond-
ing vertices and removes the redundant slits on the intersections 
where the six faces meet with each other (fig. S10).

We use the sequential quadratic programming (SQP) algorithm 
to solve the optimization problem in Eq. 1. To obtain the optimized 
ori-kiri assemblage in Fig. 2C, we prescribe the radius of the de-
ployed sphere as ad = 1; the initial side length of the compact cube is 
specified as 2ac =

√
2; in the objective function, the reference open-

ing angles are specified to be a constant ω = 0.5π (text S4). By mod-
eling the assemblage with a truss network where the bars represent 
the panel edges (fig. S11), we can compute the degree of kinematic 
indeterminacy (DOKI) of the optimized ori-kiri assemblage (text 
S5). We note that the DOKI is the DOF of a bar-and-hinge system 
under infinitesimal nodal displacement. In the remaining text, we 
simply use DOF to refer to DOKI. The analysis shows that the com-
pact cube has 180 DOFs and the deployed sphere has 138 DOFs, a 
result indicating that the obtained ori-kiri assemblage is kinemati-
cally indeterminate (i.e., with multi-DOFs of motion); therefore, 
from a physics standpoint, it has zero-energy transition paths be-
tween its compact and deployed configurations (Fig. 2C). The 

excessive number of DOFs can cause two undesired issues: first, 
controlling the transition between the two zero-energy states and, 
second, maintaining the desired shapes at the zero-energy states. To 
tackle them, we suppress all the DOFs in the second design stage by 
replacing the spherical joints with revolute joints, so as to empower 
the ori-kiri assemblage with kinematic determinacy and bistability.

The second design stage seeks to determine the directions of the 
revolute joints that guide the transition between the compact and 
deployed configurations (Fig. 2E). To this end, we calculate the rela-
tive rotation matrix for each pair of vertex-connected triangular 
panels and then calculate the direction of their rotation axis; we also 
determine the rotation angle from the components of the rotation 
matrix (text S5). Prior and post the transition (either deploying or 
undeploying), the resulting orientation of each rotation axis is un-
changed with respect to the panels (that shares the axis) as an object 
of reference (fig. S12). As a result, the revolute joints can guide pan-
el rotation around their axes and panel transition between the com-
pact and deployed configurations. Compared to spherical joints 
with 3 DOFs, each revolute joint only allows the relative rotation of 
panels around the rotation axis, which can substantially decrease 
the DOFs of the ori-kiri assemblage. Adopting the truss model 
again, where the bars replace the panel edges, we perform the kine-
matic indeterminacy analysis and find that the hinged ori-kiri as-
semblage in Fig. 2E has 0 DOF at both the compact and the deployed 
states (text S5). This result attests that the assemblage has converted 
to a structure with two zero-energy stable states.

Deployment simulation
The kinematic indeterminacy analysis is carried out on the truss 
model of bars and hinges (i.e., revolute joints), showing that the ori-
kiri assemblage is stable at the states of the compact cube and de-
ployed sphere. To further illustrate the global bistability of the 
assemblage between its two compatible states, we simulate the de-
ployment path with a simplified energy formulation of the truss 
model. Basically, we assume the energy is contributed by two sourc-
es (fig. S13): the stretching energy of the bars (denoted by ES) and 
the off-axial-rotation energy at the hinges (denoted by ER). We write 
the stretching energy ES as

where sn and s′
n
 are the original and deformed lengths of the nth bar, 

respectively; kS,n is the stiffness of the nth bar; X is the node positions 
of the truss; and Nbar is the total number of bars (Nbar = Ne).

For each hinge (indexed by m), it would be convenient to formu-
late the energy if the rotation between two hinged panels can be 
decomposed into the rotation around the hinge axis (denoted by γm) 
and the rotation around an axis that is perpendicular to the hinge 
axis (denoted by δm). It can be proved that, when the off-axial rota-
tion δm and the bar strain εn =

(
s�
n
− sn

)
∕ sn are small, this decompo-

sition exists and is unique (text S6). We assume that the rotation γm 
does not consume energy; hence, the rotation energy can be 
written as

fcomp.

(
Pc,Pd, ac, ad, c

)
= fmetric

[
Xc

(
Pc; ac

)
,Xd

(
Pd; ad

)
, c
]
∕ �

2

d (4)

(
x, y, z

)
=gcube−RS

(
p, q; k, ac

)
;
(
x, y, z

)
∈Xc,

(
p, q

)
∈Pc,

k=1, 2, … , 6
(5)

(
x, y, z

)
=gsphere−RS

(
p, q; k, ad

)
;
(
x, y, z

)
∈Xd,

(
p, q

)
∈Pd,

k=1, 2, … , 6
(6)

ES(X) =
1

2

Nbar∑
n=1

[
kS,n

(
s�n− sn

)2] (7)

ER(X) =
1

2

Nhinge∑
m=1

(
kRδ

2
m

)
(8)
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where kR is the off-axial rotational stiffness and Nhinge is the total 
number of hinges.

We assume a constant axial rigidity EA for all the bars; thus, 
kS,n = EA∕ sn. We introduce a characteristic length �c to non-
dimensionalize the deformation energy. Specifically, for the assem-
blage deployed from a cube to a sphere, we define �c = ad, i.e., the 
half side length of the compact cube. Then, the scaled stretching 
energy and rotational energy are expressed by

respectively. Last, we obtain the total scaled energy

We assume kR = cREA �c, where cR is a coefficient that adjusts the 
proportion of ES and ER in ET. The coefficient can be expressed in 
terms of the stiffness by cR = kR ∕

(
kS,nsn �c

)
.

We can minimize ET(X) to simulate the deployment of the ori-
kiri assemblage, obtaining the intermediate configurations as well as 
the energy landscape at each step of the deployment path. To apply 
the loading conditions, we select a set of control nodes xctrl., pre-
scribe their positions upon deployment, and optimize the positions 
of the other nodes. Specifically, for the assemblage deployed from a 
cube to a sphere, we select six pairs of nodes that are located at the 
center of the six faces of the RS mesh (see movie S1). The main rea-
son for this choice is that these nodes travel a relatively long distance 
compared to the free points so as to effectively monitor each step of 
the deployment. We refer to text S6 for the detailed formations of 
the deformation energy, the loading conditions, and the optimiza-
tion setup.

As a first initial guess, cR = 0.1, so as to obtain small off-axial-
rotation angles and low bar strains (fig. S14), which are consistent 
with our assumption in the formulation of ER. The simulated en-
ergy landscape features an energy barrier with two zero points at 
both ends (movie S1), confirming the bistability of the hinged ori-
kiri assemblage. To validate the analysis and simulation, we 3D 
printed panels with extruded hollow cylinders whose axes are those 
of the revolute joints and pinned them together with thin metal 
rods (Fig. 2G). Upon deployment, this prototype shows a bistable 
transition between the closed cubic state and the deployed spheri-
cal state (movie S2). Last, a noteworthy observation on each revo-
lute joint is that its orientation is prescribed with respect to the 
local reference of the panel it belongs to. As a result, morphing 
from a cube to a sphere is accompanied by changes in the origami 
folding angle and the kirigami opening angle, as opposed to the 
revolute joint’s orientation.

Extension to other morphing categories
The proposed two-stage design strategy is general in the sense that 
it can be applied to different types of meshes on dissimilar closed 
surfaces. This advantage allows us to explore morphing between 
closed surfaces of distinct topologies. For example, we can use the 
standard UV mesh to discretize a sphere (Fig. 2B, left; text S1; and 
fig. S1). The mesh is named hereafter “UV mapping,” a texture map-
ping technique that can unwrap images from a 3D model’s surface 
to a 2D surface (29). The standard UV mesh is composed of trape-
zoids in its main part and two clusters of triangles in the polar re-
gion. In analogy to the RS meshes, we assign diagonals to activate 

origami folding deformations with the goal of attaining curvature 
changes. We define an array of diagonal assignment c whose compo-
nents are defined as

where the subscripts indicate the trapezoid on the ith column and 
jth row of the UV mesh, for i = 1, 2, … , 16 and j = 2, 3, … , 7. The 
array c describes the diagonal assignment for the compact spherical 
UV mesh in Fig. 2B.

With the 2D parametrization of the sphere, we can deploy the 
corresponding UV mesh in the parameter space with specified ver-
tex connection rules and map the deployed pattern onto a torus 
(texts S2 and S3 and figs. S4, S15, and S16). As a result, we obtain a 
deployed version of UV mesh on a torus. The torus has a hole, 
namely, genus-1, that is not embedded by the panels, and, thus, it is 
distinct from the sphere in terms of topology (Fig. 2B, right). Com-
pared to the initial geometry of the shape-morphing assemblage 
(Fig. 2A), we have changed the shape and topology of the closed 
surfaces, as well as the type of meshes to set up the topology-
morphing problem. Nevertheless, we can still adopt the two-stage 
design framework, as summarized below.

At the first stage, we solve Eq. 1, optimizing the vertex-location 
parameters (fig. S17) on the sphere and torus, to achieve geometri-
cal compatibility between the compact and deployed UV meshes. To 
this end, we need to modify the parametrization of the closed sur-
faces. For the compact sphere, the map Xc

(
Pc; ac

)
 becomes

For the deployed torus, the map Xd

(
Pd; ad

)
 becomes

The explicit expressions of the functions gsphere−UV and gtorus−UV are 
given in text S2. With reference to Eq. 1, we note that the size of the 
deployed configuration has become an array ad = (R, r), because a 
torus is determined by both the major radius R and the minor radius 
r. To obtain the optimized UV meshes in Fig. 2D, we prescribe the 
major and minor radii as R = 1 and r = 0.5, respectively. The radius 
of the compact sphere ac is assigned the initial value 1. In the objec-
tive function, the reference opening angles are specified to be a 
constant ω = 0.4π.

By assigning spherical joints, we obtain an ori-kiri assemblage 
with a compact spherical configuration and a deployed toric con-
figuration (Fig. 2D). The two configurations are kinematically inde-
terminate with 138 DOFs and, hence, connected by uncertain 
deployment paths with zero-energy, as investigated with the kine-
matic indeterminacy analysis. In the second stage, we obtain the 
orientation of the revolute joints by calculating the relative rotation 
matrices for the vertex-connected panels (Fig. 2F). By assigning the 
revolute joints, we decrease the DOF of the ori-kiri assemblage to 
zero and make it bistable, an outcome validated through the analysis 
of its energy landscape (movie S1). To validate the design, we as-
sembled the 3D printed panels with extruded hollow cylinders 
whose axes are those of the revolute joints (Fig. 2H). We observe 
that the topology morphing of the sphere bears larger forces at the 
equator and the poles, causing the fracture of panels in those regions 

ES(X) = ES(X)∕
(
EA �c

)
and ER(X) = ER(X)∕

(
EA �c

)
(9)

ET(X) = ES(X) + ER(X) (10)

ci,j =

{
+1, even i+ j

−1, odd i+ j
(11)

(
x, y, z

)
= gsphere−UV

(
p, q; ac

)
;
(
x, y, z

)
∈ Xc,

(
p, q

)
∈ Pc (12)

(
x, y, z

)
= gtorus−UV

(
p, q;R, r

)
;
(
x, y, z

)
∈ Xd,

(
p, q

)
∈ Pd, ad = (R, r)

(13)
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upon transition between the two compatible configurations. To 
tackle this issue, we tune the tightness of the connections, realized 
with screws and nuts (Fig. 2H, inset). When the bolts are tighter, the 
contact in the hinges increases, generating a small amount of fric-
tion that reduces the mobility of the model. On this front, we em-
phasize that the bolts are never fully tight; the intention is not to 
restrict hinge motion completely, rather to tune the hinge stiffness 
so as to better capture the morphing and appreciate the stable con-
figurations. Two levels of tightness are used. The first one is tighter 
and allows both the compact sphere and the deployed torus to retain 
their shapes under external loads (movie S3). The second one, which 

is slightly looser than the first one, reduces the energy barrier for the 
transition while avoiding the fracture of the panels (movie S3). This 
approach enables to reconcile stability and reconfigurability within 
the assemblage without failing the hinges.

In addition to the shape morphing and topology morphing, we 
can leverage our framework to achieve also the scaling of closed 
surfaces. This can be accomplished simply by choosing two sur-
faces of identical shape but dissimilar size for the compact and de-
ployed configurations, respectively. For example, Fig. 3A shows the 
scaling between two spheres achieved by the ori-kiri assemblage with 
RS meshes. In addition, by changing the sphere to a cube for the 

A

D

G

J

M

B

E

H

K

N

C

F

I

L

O

Fig. 3. Energy landscapes and geometric metrics evolving along the deployment path of the bistable ori-kiri assemblages. (A) Scaling between two spheres. 
(B) Shape morphing between a compact sphere and a deployed cube. (C) Topology morphing between a compact sphere and a deployed torus. (D to F) Scaled energy 
landscape: total energy ET, stretching energy ES, and off-axial-rotation energy ER. (G to I) Scaled radius vector length: average rave., minimum rmin., and maximum rmax. of 
all vertices. (J to L) Axial-rotation angle ∣ γ ∣ave. and off-axial-rotation angle ∣ δ ∣ave., absolute and averaged for all hinges. (M to O) Positive folding angle φ+

ave.
 and negative 

folding angle φ−
ave.

, averaged for all creases. Dashed lines represent data from models with increased number of panels, i.e., 6 × 6 × 6 for the left and middle columns and 
24 × 12 for the right column.
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deployed RS mesh, we can design another bistable shape-morphing 
assemblage that approximate a sphere at the compact state and a cube 
at the deployed state (Fig. 3B).

Geometric metrics
We now characterize the geometric signature of the ori-kiri assem-
blage morphing between two zero-energy states. We first iteratively 
minimize the deformation energy of the bar-and-hinge system on 
the morphing path. As a result, we can obtain the morphing energy 
landscape (text S6 and movies S1 and S4) and determine the con-
secutive configurations in each step. We note that for the compact 
RS sphere (deployed to sphere or cube), the control nodes are located 
at the corners of the faces. For the compact UV sphere (deployed to 
torus), the control nodes are located at the outer circumference of 
the sphere. Then, with these consecutive configurations, we can cal-
culate specific geometric metrics that describe their deformation, 
such as the radius vector length, the rotation angle of hinges, and the 
folding angle of creases. We select three representative examples—
scaling between two spheres (Fig. 3A), shape morphing between a 
sphere and a cube (Fig. 3B), and topology morphing between a 
sphere and a torus (Fig. 3C)—and compare the variations of their 
energy landscapes and geometric metrics with respect to the pseudo-
time t  through the morphing path. We also model assemblages with 
dissimilar panel numbers; we use solid lines for assemblages of 
4 × 4 × 6 panels for scaling and shape morphing and assemblages of 
16 × 8 panels for topology morphing and dash lines for assemblages 
of 6 × 6 × 6 panels for scaling and shape morphing and assemblages 
of 24 × 12 panels for topology morphing.
Energy landscape
From the energy landscapes, we can immediately appraise the bista-
bility of the ori-kiri assemblages, all illustrated with zero energy at 
their compact (t = 0) and deployed states (t = 1) and a barrier in the 
total energy ET to transit from one zero-energy state to another (Fig. 
3, D to F). For the sphere-sphere scaling (Fig. 3D) and sphere-torus 
morphing (Fig. 3F), the stretching energy ES (caused by bar stretch-
ing) is much larger than the off-axial-rotation energy ER (caused by 
the rotation of the panels deviating from the revolute joint axes). In 
contrast, for the sphere-cube morphing (Fig. 3E), ER is comparable 
with ES. This is attributed to the dramatic curvature change at the 
cube edges, which increases the rotation energy.
Radius vector length
This metric represents the distance between the vertices and the 
centroid of the closed surface. We note that the distance is scaled 
such that its initial value is equal to 1. From the statistics of this 
metric among all vertices, such as the average rave., the minimum 
rmin., and the maximum rmax., we can gain insights into the evolution 
of distinct features emerging from shape and topology variations. 
For instance, for the sphere-sphere scaling (Fig. 3G), rave., rmin., and 
rmax. keep almost identical when they increase simultaneously, indi-
cating a uniform expansion of the assemblage. For the sphere-cube 
morphing (Fig. 3H), the initially identical radius vector lengths di-
verge to dissimilar values: rave. and rmax. exhibit increase trends, 
while rmin. only varies around a constant value. For the sphere-torus 
morphing (Fig. 3I), the divergence of rave., rave., and rmax. is substan-
tial, where rmax. keeps increasing, while rave. decreases during most 
of the deployment. This strong divergence reflects the highly non-
uniform morphing and is closely associated with the topological 
change of the assemblage.

Rotation angle of hinge
The relative rotation between two panels at their common vertex 
reflects the kirigami-motion feature of the ori-kiri assemblages. It 
can be decomposed into a combination of two successive rotations: 
the axial rotation around the hinge at the common vertex and the 
off-axial rotation, if the off-axial-rotation angle is much smaller 
than π (text S6). To investigate the overall rotation angles in all hing-
es, we propose two statistics: the average absolute value of the axial 
rotation angles ∣ γ ∣ave. and the average absolute value of the off-axial-
rotation angles ∣ δ ∣ave.. The absolute operator is used to eliminate the 
positive and negative signs due to dissimilar rotation directions 
(counterclockwise or clockwise) and then extract the magnitude of 
the angles. Among all three morphing cases (Fig. 3, J to L), we can 
observe comparable variation profiles for both ∣ γ ∣ave. and ∣ δ ∣ave.. The 
axial rotation angles ∣ γ ∣ave. exhibit monotonic rising trends from 0 to 
around 90°, which reflects the deployment process with slit opening 
and surface area increasing. In contrast, the off-axial-rotation angles 
∣ δ ∣ave. first increase from 0 to a peak value and then decrease back to 
0 at t = 1, indicating that the compatibility is broken between two 
compatible states. During the entire deployment process, ∣ γ ∣ave. 
maintains low magnitude values below 2°, which is consistent with 
our assumption of small off-axial-rotation angles in the formulation 
of off-axial-rotation energy.
Folding angle of crease
In contrast with the rotation angle of hinges, the origami-motion 
contribution of our ori-kiri assemblages is represented by the fold-
ing angle variation between adjacent panels along their common 
edge. If the two panels are in a common plane, then the folding an-
gle is defined to be zero. We stipulate that the folding angle is in the 
positive range (0°, 180°] if the crease is a mountain and in the nega-
tive range [−180°, 0) if the crease is a valley. We propose two statis-
tics of the folding angles along all the creases, φ+

ave.
, the average value 

of all the positive folding angles, and φ−
ave.

, the average value of all the 
negative folding angles. Overall, for the scaling (Fig. 3M) and shape 
morphing (Fig. 3N), both φ+

ave.
 and φ−

ave.
 vary mostly in the small 

range of [−5°, 5°]. In contrast, for the topology morphing (Fig. 3O), 
φ+
ave.

 can reach up to 15°, while φ−
ave.

 maintains small magnitude val-
ues below 5◦. The large magnitude of φ+

ave.
 indicates the large curva-

ture change between the sphere and the torus. The difference in 
magnitude between φ+

ave.
 and φ−

ave.
 is caused by the specific crease 

assignment. As shown in movies S1 and S4, most creases are ap-
proximately along the toroidal direction on the deployed toric con-
figurations. Because the curvature in the toroidal direction of the 
enclosed torus is smaller than the curvature in the poloidal direc-
tion, the quadrilateral panels have more chances to bulge outward, 
which leads to mountain creases and large φ+

ave.
.

Role of number of revolute joints
In the stage II of our design strategy, we introduce revolute joints (1 
DOF) to suppress the excessive DOFs arising from spherical joints 
(3 DOFs) and to achieve global bistability of the ori-kiri assemblag-
es. An interesting question emerges: What is the outcome of par-
tially replacing spherical joints with revolute joints? We discuss the 
answer and implications of this question with numerical data illus-
trated in Fig. 4. Specifically, we investigated four morphing cases: 
the compact and deployed ori-kiri assemblages morph between two 
spheres (Fig. 4A), a sphere and a cube (Fig. 4B), a cube and a sphere 
(Fig. 4C), and a sphere and a torus (Fig. 4D). We denote the number 
of revolute joints by Nr, the number of spherical joints by Ns, and the 
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total number of joints by Nj, so we have Nj = Ns + Nr. If Nr is zero, 
then all the joints are spherical, whereas, if Nr equals Nj, then all the 
joints are revolute. Between the bounds, i.e., if 0 < Nr < Nj, then we 
have numerous choices for revolute joints among all the Nj joints. 
Either a distinct value of Nr or a dissimilar assignment of revolute 
joints can give rise to specific DOFs (denoted by Nf) of these ori-kiri 
configurations. Only if both the compact and deployed configura-
tions have 0 DOF (Nf = 0), then the morphing of an ori-kiri assem-
blage is globally bistable. To characterize this observation, we 
randomly assign Nr revolute joints and retain the others as spherical 
joints, before computing Nf through the method described in text 
S5. This enables to generate ten data points 

(
Nr,Nf

)
 for each 

Nr ∈
(
0,Nj

)
. If Nr = 0 or Nj, then there is only one way to assign the 

joints, that is, full spherical joints or full revolute joints; in either 
case, we can compute Nf as well. Together, we obtain all the data 
points (the scattered circles) in Fig. 4.

From Fig. 4, first, we can observe that the increase of Nr gener-
ally causes the decrease of Nf. The decrease is initially fast if Nf is 
large and then slows if when Nf approaches zero. We attribute this 
rate change to the higher probability of introducing redundant kine-
matic constraints when the total number of constraints (or the num-
ber of revolute joints Nr) becomes larger. Second, we can observe 
that, for a given value of Nr, Nf is generally not determined, varying 
slightly for different assignments of revolute joints (corresponding 
to the dissimilar randomly sampled data points). If Nr is sufficiently 
large, then Nf can be zero although Nr < Nj. This implies that a 
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Fig. 4. Relationship between the number of DOFs Nf and the number of revolute joints Nr for the ori-kiri assemblages. For each value of Nr, 10 data points 
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are sampled for randomly assigned locations of revolute joints. The compact and deployed ori-kiri assemblages morph between (A) two spheres, (B) a sphere and a cube, 
(C) a cube and a sphere, and (D) a sphere and a torus. In (A) to (C), the assemblages are composed of 4 × 4 × 6 or 6 × 6 × 6 panels. In (D), the assemblages are composed 
of 16 × 8 or 24 × 12 panels.
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partial replacement of spherical joints with revolute joints can pre-
serve the bistability. On the other hand, when Nr closely approaches 
but not matches Nj, it is still possible that Nf is not zero, for some 
specific assignments of the revolute joints. This explains why we as-
sign full revolute joints at the second design stage, thereby guaran-
teeing bistability, i.e., Nf is always zero for Nr = Nj.

The existence of redundant constraints can explain some other 
features of the scatter plots in Fig. 4. First, for the deployed con-
figurations (corresponding to the blue and orange circles), Nf 
drops with an almost constant slope of −2 at the initial range. In 
contrast, for the compact configurations (corresponding to the 
pink and green circles), Nf  decreases with varying slopes that are 
close to −2 but gradually increase. This can be explained by ob-
serving that the compact configurations have several overlapping 
bars. The overlapping may increase the number of redundant kine-
matic constraints. Second, if all the joints are spherical (Nr = 0), 
then the cubes have more DOFs than the spheres (see Fig. 4, B and 
C). This can be attributed to the large number of coplanar bars in 
the cubes, a phenomenon that may increase the number of redun-
dant kinematic constraints.

Global size change upon deployment
For all the morphing cases that are discussed above, we have speci-
fied reference opening angles ω = 0.5π for the RS meshes and 
ω = 0.4π for the UV meshes. By specifying distinct values of ω, we 
can adjust the global size change of the deployed configurations 
with respect to the compact size. We illustrate this effect in Fig. 5. 
Specifically, we calculate the global surface area expansion ratios 
(denoted by α) of unit spheres that are deployed to spheres, cubes, 
and tori. These configurations are obtained by solving Eq. 1 with 
various values of ω between 0.2π and 0.8π. One can see that large α 
appears at around ω = 0.5π, corresponding to large opening slits. 
On the other hand, α becomes small for ω = 0.2π or 0.8π, corre-
sponding to small opening slits. It is worth noting that, for a given ω, 
α varies for dissimilar deployed shapes. The cubes or tori tend to 
have larger α than the deployed spheres do. This can be explained by 
observing that the deployed cubes or tori are substantially different 

in shape from the compact spheres, while the deployed spheres only 
have size change. For a given reference opening angle and prescribed 
target shape, α is also governed by the number of panels constituting 
the assemblages. However, this effect is less substantial; the red and 
blue scatters generally appear in pairs as shown in Fig. 5.

Unitary ori-kiri metamaterials with inner support
To further validate the shape morphing and topology morphing of 
the proposed ori-kiri design strategy, we extend this concept to uni-
tary structural materials and conduct proof-of-concept validation 
and finite element simulations. The unitary ori-kiri metamaterials 
(Fig. 6, A and E) were fabricated using multi-jet fusion (MJF) 3D 
printing technology with the thermoplastic polyurethane (TPU) 
powder. Because of the imperfect hinge orientations, the unitary ori-
kiri metamaterials lose their intended bistable properties, necessitat-
ing auxiliary inner support to achieve their potential functionalities.

We perform finite element simulations (ABAQUS, Dassault Sys-
tems) on a representative unit that is 1/8 of the unitary cube or 
sphere, leveraging their mirror and axial rotational symmetry, re-
spectively. Consistent with the control nodes selected for the truss 
model simulation (movie S1), the loadings are applied to the living 
hinges located on the symmetry planes, which exhibit the largest 
deformation throughout the deployment. Specifically, circular-
envelope displacement loadings and reflection-symmetry boundary 
conditions are applied to these hinges, highlighted in red and yellow, 
respectively (Fig. 6B). In the unitary sphere model, horizontal out-
ward displacements are applied to the hinges on the neutral plane, 
vertical inward displacements are applied to the hinges at the polar 
points, and axial rotational symmetry boundary conditions are im-
posed on the hinges located on the periodic boundaries (Fig. 6F).

Guided by the strain distribution of the deployed sphere (illus-
trated in Fig. 6C), we incorporated two inner rigid rings into the 
cubic specimen, resulting in the deployed unitary sphere (Fig. 6D). 
From a comparison between the representative symmetric unde-
formed and deformed units of the sphere model in Fig. 6G, we ob-
serve the local snapping of the panels around the poles where stress 
concentration occurs. Accordingly, we applied an inner rigid ring at 
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the equator and two additional blockers at the poles of the specimen 
to achieve the designated deployed torus, as shown in Fig. 6H. Overall, 
despite the reduced structural bistability compared to their assem-
blage counterparts, the unitary-piece ori-kiri model, assisted by 
the inner support, can still show the attainment of a topology 
change, hence showing promising extensions into the realm of 3D 
printed metamaterials.

Reprogrammable stiffness and permeability
The shape morphing from a cube into a sphere gives rise to a notable 
change in curvature and perforation area, thereby empowering the ori-
kiri assemblage (Fig. 2G) with distinct stiffness and permeability in its 
two stable states. In its cubic configuration, the specimen exhibits two 
primary orientations: one aligned parallel to the discontinuous inter-
sections (green lines, direction 1) and the other perpendicular to them 
(direction 2), each delivering dissimilar mechanical responses. We ex-
amined the directional force-displacement behavior of the specimen in 
both its two stable states (Fig. 7, A and B), and the corresponding effec-
tive compression stiffness (secant slope of the force-displacement 
curve) and energy dissipation ratio during a loading-unloading cycle 
are summarized in Fig. 7C.

In its cubic state, the ori-kiri assemblage demonstrates substan-
tially higher effective compression stiffness in both directions 1 and 
2, with values ~803 and 504%, respectively, of those in the spherical 
state at a compression of 8 mm. This evident variation in stiffness 
results from the emergence of the global curvature, which shifts the 
energy distribution of the assemblage from the compression of the 
constituent panels to the relative out-of-plane bending around each 
revolute hinge. The effective stiffness of the assemblage in its cubic 
state exhibits an evident increase (see the red and gray curves in Fig. 
7C) as the compressive load raises. This can be attributed to the 

manufacturing-induced gap between adjacent panels, which is sup-
pressed by the compression, and to the occurrence of self-contact 
between panels. Although the deployed sphere features a drop of 
stiffness, the round shape may be advantageous over the cube in iso-
lating low-frequency vibration or mitigating stress concentration. 
We point out that the anisotropy of the stiffness response in the cu-
bic state becomes more pronounced with increasing compression, 
while, in the spherical state, the stiffness tends to be more isotropic 
at relatively large displacements.

The ori-kiri assemblage delivers certain mechanical hysteresis 
during a loading-unloading cycle due to the frictional rotation of 
each revolute hinge. Unlike the stiffness response (Fig. 7C, top), the 
mechanical hysteresis performance, evaluated by the energy dissipa-
tion ratio Ed ∕

(
Ed+Er

)
, where Ed is the dissipated energy and Er is 

the return energy (inset in Fig. 7C, bottom), shows less dependence 
on shape or direction (Fig. 7C, bottom). This phenomenon is pri-
marily attributed to the fact that the axial-rotation of individual 
panels is not a preferred deformation mode of the assemblage under 
global compression. We point out that the prototype cannot transit 
between the two stable configurations under the application of uni-
axial compression. The instability of the prototype therefore must be 
triggered through the application of another set of external load-
ings, as shown in movie S1. Here, we apply displacement boundary 
conditions at multiple nodes to drive the transition as performed in 
our numerical simulation. As shown in movie S2, we open and close 
multiple slits with wires to realize the transition.

During the bistable transition from a cube to a sphere, the sur-
face area covered by the ori-kiri assemblage boosts to 200% of its 
initial value, enabling the originally enclosed structure to become 
permeable. Representative states of the assemblage are depicted in 
Fig. 7D, showcasing various intermediate configurations that enable 
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D E

BA C

Fig. 7. Reprogrammable stiffness and permeability of the bistable ori-kiri assemblage transitioning from a cube to a sphere. (A) Force-displacement response of 
the assemblage along direction 1; the red curve represents the cubic state, and the blue curve represents the spherical state. (B) Compressive response of the assemblage 
along direction 2; the gray curve represents the cubic state, and the yellow curve represents the spherical state. (C) Directional compression stiffness and energy dissipa-
tion ratio of the ori-kiri assemblage in its two states. Shaded areas in (A) and (B) and error bars in (C) denote the minimum and maximum of the data from three repeated 
tests. (D) Evolution of the permeability of the ori-kiri assemblage during its bistable shape transformation. (E) Packaging application of the ori-kiri assemblage.
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adjustable levels of light illumination. This feature has potential appli-
cations across various fields. For example, the ori-kiri assemblage, 
with panels coated with insulation films, can be harnessed for adaptive 
shields enabling the control of thermal, fluidic, or electromagnetic flux 
on demand. Additionally, it can serve as an expandable packaging so-
lution, allowing controllable release of a granular cargo with dissimilar 
grain sizes at customized rate, as demonstrated in Fig. 7E.

Extension to irregular shapes
We have showed the generality of our two-stage design strategy with 
two dissimilar meshes used for shape morphing (the RS mesh) and 
topology morphing (the UV mesh). Here, we show that our strategy 
is general in an additional aspect; it can accommodate free-form ir-
regular shapes. Figure 8 shows examples of shape-morphing into 
irregular shapes. The first morphs from a sphere to an egg shape 
(Fig. 8C), a design obtained by solving the optimization problem 
given by Eq. 1. The egg shape can be realized by simply modifying 
the maps Xc

(
Pc; ac

)
 and Xd

(
Pd; ad

)
 (see Eqs. 5 and 6) in the compat-

ibility constraint function fcomp. (see Eq. 4). For the compact sphere, 
the map Xc

(
Pc; ac

)
 becomes

For the deployed egg shape, the map Xd

(
Pd; ad

)
 becomes

The index k denotes the six different faces on the RS meshes. The 
explicit expression of gsphere−RS is given in text S2. To be consistent 
with the reduced symmetry of the egg shape, the symmetry con-
straint function fsym. in Eq. 1 only involves two planes of mirror sym-
metry for the egg shape. With Eqs. 14 and 15, we can use the regular 
parametrization (see text S3) to generate the initial geometry for the 
optimization (see Fig. 8A) and then optimize it to obtain the com-
patible compact and deployed configurations. This finalizes the first 
design stage. The second design stage is exactly as before, i.e., we 
assign the revolute joints to achieve global bistability (see Fig. 8C).

In addition to the egg shape, the other example in Fig. 8D shows 
the morphing of a sphere into a completely irregular shape with no 
mirror or rotational symmetry, which we call the “onigiri” shape. In 
this case, the map Xc

(
Pc; ac

)
 is still expressed by Eq. 14, while the 

map Xd

(
Pd; ad

)
 is given by

The symmetry constraint function fsym. in Eq. 1 is removed for the 
irregular onigiri shape. Again, we use the regular parametrization 
(see text S3) to generate the initial geometry for the optimization 
(see Fig. 8B) and then optimize it to obtain the compatible compact 
and deployed configurations. We then assign the revolute joints to 
finalize the bistable assemblage (see Fig. 8D).

We perform the numerical energy analysis (text S6) and illustrate 
the results in Fig. 8E for the egg shape and in Fig. 8I for the onigiri 

shape. Compared to the energy curves for scaling a sphere (see Fig. 
3, A and D), the energy landscapes for the irregular egg and onigiri 
shapes exhibit sharp peaks and higher peak energy (which is non-
dimensionalized), indicating higher incompatibility on their mor-
phing paths. Moreover, for the onigiri shape, local non-smoothness 
is observed, reflecting the local instabilities due to the large size 
and shape discrepancy of the individual cells. The consecutive con-
figurations on the deployment paths of the egg and onigiri shapes 
are provided in movie S5. We also illustrate the geometric metrics 
evolving along the deployment path of the egg (Fig. 8, F to H) and 
onigiri shapes (Fig. 8, J to L). The morphing from the sphere to ir-
regular shapes causes a divergence of the radius vector lengths (Fig. 
8, F and J). The larger off-axial-rotation angles, peak values around 
3° as shown in Fig. 8 (G and K) versus peak value less than 1° as 
shown in Fig. 3J, indicates the higher incompatibility on their mor-
phing paths of the irregular shapes. The local sharp change of the 
irregular shapes induces large magnitude of the folding angles 
(around −7° in Fig. 8H and around −9° in Fig. 8L). 

DISCUSSION
This work has presented a class of ori-kiri assemblages that can morph 
between two stable configurations approximating different closed sur-
faces. A two-stage design framework is introduced to generate the 
crease-slit patterns of the ori-kiri assemblages. The framework involves 
first applying a hybrid origami-kirigami principle to meet the geomet-
ric compatibility condition, followed by incorporating kinematic con-
straints to ensure that the system is kinematically determinate.

Surface morphing generally involves a combination of bending and 
stretching of the constituent elements in a discrete surface or the con-
tinuous medium of a unitary surface, resulting in changes to both cur-
vature and area. Relying solely on either origami or kirigami principles 
poses challenges in achieving specific target shapes, particularly closed 
surfaces. To address this issue, we have chosen to integrate origami and 
kirigami principles, enabling the morphing of complex shapes and 
even topologies. Furthermore, integrating origami and kirigami prin-
ciples substantially increases the DOFs in the system, resulting in a 
floppy and unstable mechanism. To mitigate this, we selectively restrict 
the rotational DOFs at the hinges, allowing adjacent panels to rotate 
exclusively around a designated axis. This strategy provides the ori-kiri 
assemblages with structural rigidity and deployment guidance.

Governed by a combination of distinct crease-dominated and slit-
dominated deformation modes, diverse types of closed-surface morph-
ing are demonstrated including scaling, shape morphing, and topology 
morphing. Our design framework is intentionally conceived to separate 
geometry considerations from mechanics considerations, hence consti-
tuting a two-stage process: Only if the geometry satisfies compatibility 
at the first design stage, we can use this geometry in the second design 
stage to calculate the direction of the revolute joints. The first design 
stage is thus purely based on geometry, as no constraints are applied to 
the vertices that connect the panels; this implies that the nodes are es-
sentially spherical joints. Only at the second design stage do we tackle 
the mechanics by introducing revolute joints that reduce the DOFs to 
zero. By doing so, we obtain the bistable assemblages. If the first design 
stage involves another optimization target, for example, minimizing the 
number of revolute joints to induce bistability, then the revolute joints 
should be applied in the first design stage. In other words, the two 
design stages must be integrated into one process. In this case, we 

(
x, y, z

)
=gsphere−RS

(
p, q; k, ac

)
;
(
x, y, z

)
∈Xc,

(
p, q

)
∈Pc,

k=1, 2, … , 6
(14)

(15)

(16)
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anticipate that the integrated process will inevitably increase the com-
plexity of the formulation and the attainment of the solution.

We simulate the morphing process with a truss surrogate model 
and obtain energy landscapes that validate the bistability pursued by 
our proposed design framework. A set of prototypes are fabricated to 
show the attainment of shape morphing between a cube and a sphere 
and the topology morphing between a sphere and a torus. With the 

cube-sphere assemblage, we show its programmable stiffness and 
permeability and enlighten potential applications, including trans-
portable packaging and electromagnetic shielding.

The platform here presented, leveraging a fine synergism between 
origami and kirigami principles, provides a promising avenue for mor-
phing closed surfaces. For the shape morphing, our approach effective-
ly stitches together six separate continuous meshes. This strategy may 

A

C

E

I

F

J

B

D

G

K

H

L

Fig. 8. Design of irregular shape-morphing bistable ori-kiri assemblages and their energy landscapes and geometric metrics evolving along the deployment path. 
(A and B) Initial geometry and (C and D) the compact and deployed bistable ori-kiri assemblages of the morphing egg [(A) and (C)] and the morphing onigiri [(B) and (D)]. 
(E to L) Energy landscapes and geometric metrics of the morphing egg [(E) to (H)] and the morphing onigiri [(I) to (L)]: Energy landscape: total energy ET, stretching energy ES, 
and off-axial-rotation energy ER [(E) and (I)]; radius vector length: average rave., minimum rmin., and maximum rmax. of all vertices [(F) and (J)]; axial-rotation angle ∣ γ ∣ave. and off-
axial-rotation angle ∣ δ ∣ave., absolute and averaged for all hinges [(G) and (K)]; positive folding angle φ+

ave.
 and negative folding angle φ−

ave.
, averaged for all creases [(H) and (L)].
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be further extended by increasing the number of separate meshes and 
optimizing the way that they are stitched together (i.e., determining the 
connection between adjacent meshes) to morph target surface of higher 
complexity. While the single mesh enables topology morphing between 
a sphere and a torus, stitching multiple meshes may enable more com-
plex topology transformations. Moreover, the adaptability of our frame-
work may be enhanced by adopting a triangular (kagome) kirigami 
pattern, which offers more DOFs than quadrilateral meshes to fit com-
plex surfaces (28), or a hybrid of quadrilateral and triangular patterns to 
pursue a balance between design flexibility and structural stability.

Last, the principle of integrating origami and kirigami is not lim-
ited to designing mechanism assemblages, as we qualitatively touch 
upon the more challenging problem of morphing 3D printed meta-
materials. We fabricate ori-kiri metamaterials with features of shape 
morphing and topology morphing and acknowledge the current 
fabrication-driven challenge of realizing carefully oriented spatial 
hinges, hence only partially demonstrating the achievement of bi-
stability. Morphing bistable closed surfaces through a set of unitary-
piece metamaterials across various scales is the subject of future 
study, harnessing more powerful fabrication technology.

MATERIALS AND METHODS
Fabrication
Panels of the ori-kiri assemblage in Figs. 2G and 7 were made of 
polylactic acid filament and water-dissolvent support material poly-
vinyl alcohol filament with a dual-extruder fused deposition model-
ing 3D printer (QIDI TECH i-fast 3D printer, Wenzhou, Zhejiang, 
China) by 0.4-mm line width, 0.2-mm layer height, 15% infill density 
of gyroid pattern, and 60 mm/s printing speed. Panels of the ori-kiri 
assemblage in Fig. 2H were made of Nylon PA12 with an SLS (selec-
tive laser sintering) 3D printer by 0.8-mm wall thickness. Each panel 
was carefully designed with orientated revolute hinges such that it 
can be connected to its adjacent panels via pin joints. The unitary 
models in Fig. 6 were made of TPU powder with an MJF 3D printer.

Experiments
The quasi-static compression tests of the ori-kiri assemblage in Fig. 
7 were performed on the Electro-Force 3510 fatigue machine (Bose 
Corporation, Framingham, Massachusetts) with a loading rate of 
0.16 mm/s. The tests were repeated three times in each direction and 
each state for the experimental uncertainty regime.

Supplementary Materials
The PDF file includes:
Supplementary Text
Figs. S1 to S17
Legends for movies S1 to S5

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S5
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