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Kresling origami has recently been widely used to
design mechanical metamaterials, soft robots and
smart devices, benefiting from its bistability and
compression-twist coupling deformation. However,
previous studies mostly focus on the traditional
parallelogram Kresling patterns which can only be
folded to cylindrical configurations. In this paper,
we generalize the Kresling patterns by introducing
free-form quadrilateral unit cells, leading to diverse
conical folded configurations. The conical Kresling
origami is modelled with a truss system, by which
the stable states and energy landscapes are derived
analytically. We find that the generalization preserves
the bistable nature of parallelogram Kresling
patterns, while enabling an enlarged design space of
geometric parameters for structural and mechanical
applications. To demonstrate this, we develop inverse
design frameworks to employ conical Kresling
origami to approximate arbitrary target surfaces of
revolution and achieve prescribed energy landscapes.
Various numerical examples obtained from our
framework are presented, which agree well with the
paper models and the finite-element simulations. We
envision that the proposed conical Kresling pattern
and inverse design framework can provide a new
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perspective for applications in deployable structures, shape-morphing devices, multi-modal
robots and multistable metamaterials.

1. Introduction
Origami is the craft of folding paper that can transform simple two-dimensional (2D) flat sheets
into complex three-dimensional (3D) structures. Such folding procedures can introduce many
unique mechanical properties coupled with geometric constraints, such as negative Poisson’s
ratio [1,2], rigid-foldability [3,4] and multistability [5,6]. In recent years, origami principles have
become an ideal platform for designing deployable and functional structures. A wide range of
such applications have been carried out, including deployable space solar panels [7], medical
stents [8], mechanical metamaterials [9–14], architectural building blocks [15–17], inflatable
shelters [18], soft robots [19–21] and shape-programmable origami tessellations [22–28].

In the rich and colourful origami gallery, a large class of classical origami is composed of
tessellated periodic unit cells, such as the Miura [29], helical Miura [5], Kresling [30], square-twist
[31] and waterbomb [32] patterns. Among these periodic origami patterns, Kresling pattern—
originally discovered by the architect Biruta Kresling when conducting the twist buckling
experiments of thin-walled cylinders [30]—partakes of its bistability and compression-twist
coupling deformation characteristics. When subjected to an axial force or torque that is sufficiently
large, the Kresling origami structure will jump from one stable state to the other through a
coupled deformation of axial translation and rotation [33–35]. Harnessing the bistability and the
compression-twist coupling motion, Kresling origami has enabled the design of stiffness-tunable
mechanical metamaterials [36–38], impact mitigation systems [39], crawling or grasping robots
[40–42] and smart control devices [43–45].

The periodicity of origami patterns (including the Kresling origami) significantly simplifies
the analysis of global properties such as foldability and multistability, as well as the fabrication
process. However, the shapes and mechanical responses of these origami become periodic
and restrictive in some sense. For the inverse design of origami in attempts to achieve target
folded shapes or energy landscapes, one has to generate free-form crease patterns to break
the periodicity. For example, Tachi [4] generalized the well-known Miura-ori and derived the
geometric conditions for realizing rigidly and flat-foldability of general quadrilateral mesh
origami. Based on this generalization, various optimization algorithms have been developed
to determine the quadrilateral mesh patterns that can approximate curved surfaces [3,23–26].
Besides, the inverse design of 3D origami tessellation has been achieved by using the generalized
Resch’s pattern [27] and the generalized waterbomb pattern [28]. However, such a generalization
and the related applications in inverse design have not been realized for traditional Kresling
origami (TKO), limited by its parallelogram unit cells and cylindrical folded configuration. To
broaden the design space and fully unlock the application potentiality of Kresling origami, in
this paper, we generalize the traditional parallelogram Kresling origami by introducing general
quadrilateral unit cells with additional degrees of freedom, and obtain a new Kresling pattern
with a conical folded configuration instead of the traditional cylindrical one. We expect that the
conical Kresling origami (CKO) can serve as a promising candidate for the design of multistable
structures with desired folded configurations and energy landscapes.

To this end, we firstly present a generalized design framework for CKO composed of general
quadrilateral unit cells, and derive the analytical solutions and design spaces of its stable
states. The phase diagrams characterizing the stability are illustrated for multiple examples
with different geometric parameters. Then, we solve two inverse problems to demonstrate the
functional applications of the CKO in two different aspects: curvature programming and energy
programming. For the first demonstration, we use CKO tessellations to approximate arbitrary
curved surfaces of revolution. For the second one, we design multistable CKO tessellations with
prescribed stable-state heights and energy barriers. We also fabricate paper models and perform
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finite-element (FE) simulations to support the validity of the numerical results of our inverse
design. These two demonstrations show that the CKO has potential capabilities in applications
that need target shapes (e.g. origami antenna [46]) or target mechanical responses (e.g. origami
structures for energy absorption [47,48]).

2. Conical Kresling origami
We start by introducing the geometry of the TKO and the CKO. As shown in figure 1a, the
reference crease pattern of a TKO comprises an array of congruent parallelogram unit cells. By
folding along the mountain and valley creases and connecting the two ends of the flat sheet in
a compatible manner, the TKO can form a cylindrical structure with helical symmetry. Instead,
by using an array of congruent general convex quadrilateral unit cells and following the same
folding process of the TKO, a conical structure can be obtained (figure 1b). Here, we define this
new pattern as the CKO. The representative unit cells of the CKO can be characterized by four
geometric parameters: the top edge length a, the bottom edge length b, the side edge length c (i.e.
the mountain crease) and the angle β between the bottom edge and the mountain crease. Note that
the neighbouring unit cells share the same mountain crease, therefore, the opposite side lengths
of the quadrilateral unit cell are equal. Then, the length of the valley crease can be expressed as

d =
√

b2 + c2 − 2bc cos β. (2.1)

(a) Theoretical modelling
Next, we develop a theoretical model to investigate the stability of the CKO. Since the Kresling
origami is not rigidly foldable [44,45], its triangular facet may experience bending or warping
upon folding. It is therefore difficult to accurately describe its mechanical behaviours with a
theoretical model. To overcome this issue, following many previous works [36,38,45], we assume
that the elastic energy change of the CKO during the folding process is mainly induced by the
crease stretching or shortening, and the bending energy of the facets and the folding energy of
the creases are negligible [49]. Under this assumption, the CKO is equivalent to a truss model
shown in figure 2a. Such a truss model has been proved to be accurate and effective in capturing
the elastic behaviours of TKO structures [38,45,49]. In this way, the elastic energy of the CKO can
be represented by the total strain energy of its creases (i.e. trusses), which can be written as [36,45]

U = nkm

2
(c̃ − c)2 + nkv

2
(d̃ − d)2, (2.2)

where n is the number of unit cells, km = EA/c and kv = EA/d are the stiffness coefficients of the
mountain creases and the valley creases, respectively, E is the elastic modulus, and A is the cross-
section area. c̃ and d̃ are the lengths of the mountain creases and the valley creases during folding,
respectively.

Figure 2b is the top view of the CKO truss model, in which B′
i (i = 1, 2, . . . , n) is the projection

of Bi onto the bottom surface. The radii of the circumcircles of the top and bottom surfaces, r and
R, can be calculated by

r = a
2 sin(π/n)

and R = b
2 sin(π/n)

. (2.3)

From this diagram, we can obtain that

c̃(h, ϕ) =
√

h2 + A1B′
1

2 =
√

h2 + r2 + R2 − 2rR cos ϕ (2.4)

and

d̃(h, ϕ) =
√

h2 + A1B′
2

2 =
√

h2 + r2 + R2 − 2rR cos
(

ϕ + 2π

n

)
, (2.5)
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Figure 1. Schematics of (a) a TKO composed of parallelogram unit cells, and its cylindrical folded configuration, (b) a CKO
composed of general convex quadrilateral unit cells, and its conical folded configuration. (Online version in colour.)
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Figure 2. Truss model for CKO. (a) 3D view. The red and blue lines represent the valley creases and the mountain creases,
respectively. The black lines denote the bottom and top frames. (b) Top view. B′i (i = 1, 2, . . . , n) is the projection of Bi onto
the bottom surface. The two red circles are the circumcircles of the bottom and top surfaces. (Online version in colour.)

where h is the height of the CKO and ϕ is the relative twist angle of the top and bottom surfaces.
The pair (h, ϕ) can be used to represent an intermediate state upon folding. Here, ϕ should satisfy

0 ≤ ϕ ≤ min {ϕf , ϕs}, (2.6)

where ϕf corresponds to the folded-flat state (i.e. h = 0), and ϕs = π − 2π/n associates with the
locked state, which means that exceeding this twist angle, the crease lines will intersect each
other.

(b) Analytical solutions for stable states
Subsequently, we derive the analytical solutions for the stable states of CKO based on the truss
model. According to equations (2.2)–(2.5), the elastic energy U depends on two variables, h and ϕ.
To find the stable states of the CKO, we take derivatives of the elastic energy with respect to
h and ϕ, respectively, and obtain

∂U
∂h

= nkm(c̃ − c)
∂ c̃
∂h

+ nkv(d̃ − d)
∂ d̃
∂h

(2.7)
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and
∂U
∂ϕ

= nkm(c̃ − c)
∂ c̃
∂ϕ

+ nkv(d̃ − d)
∂ d̃
∂ϕ

. (2.8)

By setting the two derivatives to zero, and then substituting equations (2.4) and (2.5), we have

kmh
(

1 − c
c̃

)
+ kvh

(
1 − d

d̃

)
= 0 (2.9)

and

km

(
1 − c

c̃

)
sin ϕ + kv

(
1 − d

d̃

)
sin

(
ϕ + 2π

n

)
= 0. (2.10)

Obviously, h = 0 is a solution of equation (2.9). Substituting it into equation (2.10), the relative
twist angle ϕf at the folded-flat state can be determined. Thus, we get a stationary point (hf , ϕf )
with hf = 0. In the electronic supplementary material, we show that under certain conditions,
(hf , ϕf ) is a local minimum point of the elastic energy U(h, ϕ), corresponding to a folded-flat non-
zero-energy stable state of the CKO.

Moreover, when h �= 0, substituting equation (2.9) into equation (2.10), and applying the
identity sin(ϕ + 2π/n) − sin ϕ = 2 cos(ϕ + π/n) sin(π/n), one can obtain that

2kv

(
1 − d

d̃

)
cos

(
ϕ + π

n

)
sin

π

n
= 0, (2.11)

which gives the necessary conditions for a stable state

ϕ = π

2
− π

n
or d̃ = d. (2.12)

By inserting ϕ = π/2 − π/n into equation (2.9), the corresponding height h0 can be determined.
Then we obtain a stationary point (h0, ϕ0), in which ϕ0 = π/2 − π/n. It can be proved that for a
bistable CKO with two zero-energy stable states, (h0, ϕ0) is a saddle point of the energy surface
U(h, ϕ) (see Proof 1 in electronic supplementary material), while it is a maximum point of the
curve on the energy surface U(h, ϕ) determined by ∂U/∂h = 0 or ∂U/∂ϕ = 0 (see Proofs 2 and 3 in
electronic supplementary material).

For d̃ = d and h �= 0, equation (2.9) implies c̃ = c. Then the lengths of creases in the reference
states and the folded states are the same. In this case, U(h, ϕ) = 0 and the CKO is at a zero-energy
and trivially stable state. Therefore, the condition for the CKO with zero-energy stable state is that
the creases preserve their original lengths, which can be expressed as√

h2 + r2 + R2 − 2rR cos ϕ = c

and

√
h2 + r2 + R2 − 2rR cos

(
ϕ + 2π

n

)
= d.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

Substituting the first equation of equation (2.13) into the second one yields

cos ϕ − cos
(

ϕ + 2π

n

)
= d2 − c2

2rR
. (2.14)

By introducing equations (2.1) and (2.3), and using the trigonometric identity cos ϕ − cos(ϕ +
2π/n) = 2 sin(ϕ + π/n) sin(π/n), equation (2.14) can be rewritten as

sin
(
ϕ + π

n

)
= b − 2c cos β

a
sin

π

n
. (2.15)

Under the condition in equation (2.6), equation (2.15) has at most two solutions, which
suggests that the CKO has at most two zero-energy stable states. The number of the stable states
depends on the geometric parameters of its unit cells. To identify this, we discuss this problem in
three cases, according to the order of occurrence of the two critical states (i.e. folded-flat state and
locked state) upon folding. For simplicity, we define λ = ((b − 2c cos β)/a) sin(π/n).
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(a)
crease pattern

mountain creases valley creases
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Figure 3. Crease patterns and stable-state configurations of bistable CKO composed of isosceles trapezoid unit cells. (a) A non-
flat-foldable CKOwith geometric parameters a= 1, b= 2 and c = 4. (b) A flat-foldable CKOwith geometric parameters a= 1,
b= 2 and c = √

7. The number of unit cell is 6. (Online version in colour.)

Case 1: Folded-flat state and locked state occur simultaneously. In this case, we have ϕf =
ϕs = π − 2π/n, which gives c = cfs �

√
r2 + R2 + 2rR cos(2π/n) based on equation (2.10). The point

(hf , ϕf ) = (0, π − 2π/n) corresponds to the folded-flat zero-energy stable state of a CKO composed
of isosceles trapezoid unit cells (figure 3b). We will discuss this special crease pattern in detail in
remark 2.1.

Case 2: Locked state occurs first. When the locked state takes place first upon folding, we have
ϕs < ϕf , which leads to c > cfs. In this case, the CKO cannot be folded flat (i.e. h cannot be zero),
and the relative twist angle ϕ needs to satisfy 0 ≤ ϕ ≤ ϕs based on equation (2.6). Consequently,
when sin(π/n) ≤ λ < 1, equation (2.15) has two solutions for ϕ within this range, and accordingly
the CKO has two zero-energy stable states, which are given by

(h1, ϕ1) =
(√

c2 − r2 − R2 + 2rR cos ϕ1, arcsin λ − π

n

)
(2.16)

and

(h2, ϕ2) =
(√

c2 − r2 − R2 + 2rR cos ϕ2, π − arcsin λ − π

n

)
. (2.17)

Particularly, when λ = 1, we have ϕ1 = ϕ2 = ϕ∗ and h1 = h2 = h∗, and equation (2.15) has only
one solution for ϕ, which implies that the CKO has only one zero-energy stable state at

(h∗, ϕ∗) =
(√

c2 − r2 − R2 + 2rR sin
π

n
,
π

2
− π

n

)
. (2.18)

Coincidentally, when λ = 1, one can prove that the point (h0, ϕ0) also reaches the stable-state
point (h∗, ϕ∗) (see Proof 4 in electronic supplementary material). Then all the stationary points
correspond to the same zero-energy state, i.e. the stable state.

Case 3: Folded-flat state occurs first. When the folded-flat state occurs first upon folding, we
have ϕf < ϕs, which results in c < cfs. Under this condition, we can obtain from equation (2.6)
that 0 ≤ ϕ ≤ ϕf . Moreover, we know from equations (2.16) and (2.17) that ϕ1 + ϕ2 = ϕs = 2ϕ0 = π −
2π/n. Without loss of generality, assuming ϕ1 ≤ ϕ2, we have ϕ1 ≤ ϕ0 ≤ ϕ2 < ϕs. In the following,
we discuss the number of stable states of the CKO based on ϕf compared with ϕ0, ϕ1 and ϕ2.

(i) When ϕ2 ≤ ϕf < ϕs, we have sin(π/n + ϕf ) ≤ λ ≤ 1. In this case, if λ �= 1, equation (2.15) has
two solutions ϕ1 and ϕ2, and accordingly the CKO has two zero-energy stable states given
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by equations (2.16) and (2.17). Otherwise if λ = 1, equation (2.15) has only one solution ϕ∗,
indicating that the CKO has only one zero-energy stable state given by equation (2.18).

(ii) When ϕ0 < ϕf < ϕ2, we have sin(π/n) ≤ λ < sin(π/n + ϕf ). In this case, equation (2.15) has
only one solution ϕ1, which suggests that the CKO has only one zero-energy stable state,
i.e. equation (2.16). However, the stationary point (hf , ϕf ) corresponding to the folded-flat
state is a local minimum point of the elastic energy U(h, ϕ) in this situation (see Proof 5
in electronic supplementary material), which provides a non-zero-energy stable state for
the CKO. Therefore, the CKO is also bistable.

(iii) When ϕ1 ≤ ϕf ≤ ϕ0, we have sin(π/n) ≤ λ ≤ sin(π/n + ϕf ). In this case, equation (2.15) has
only one solution ϕ1 and (hf , ϕf ) is not a local minimum point, indicating that the CKO
has only one zero-energy stable state given by equation (2.16).

Remark 2.1. When the quadrilateral unit cell is an isosceles trapezoid, one can find that
a = b − 2c cos β. Under this condition, equation (2.15) reduces to sin(ϕ + π/n) = sin(π/n), and the
two solutions of the relative twist angle are ϕ1 = 0 and ϕ2 = π − 2π/n. Substituting ϕ1 and ϕ2 into
equations (2.16) and (2.17), the two stable states can be obtained as

(h1, ϕ1) = (
√

c2 − r2 − R2 + 2rR, 0) (2.19)

and

(h2, ϕ2) =
(√

c2 − r2 − R2 − 2rR cos
2π

n
, π − 2π

n

)
. (2.20)

From equations (2.19) and (2.20), we find that when R − r < c < cfs, the second solution equation
(2.20) does not exist, and the CKO composed of isosceles trapezoid unit cells has only one stable
state, i.e. equation (2.19). But when c ≥ cfs, both solutions exist, and the CKO has two stable states.
For the latter case, the length of the mountain crease c is in the range that makes the locked state
occur first (c > cfs) or makes the two critical states take place simultaneously (c = cfs). In figure 3,
we give two typical examples for this special circumstance, including a non-flat-foldable bistable
CKO with c > cfs, and a flat-foldable bistable CKO with c = cfs. It is interesting that the second
stable state of the bistable CKO consisting of isosceles trapezoid unit cells always occurs at the
locked state upon folding, making the structure to be self-locked. Moreover, since our theoretical
model does not consider the folding stiffness of the creases and the thickness of the paper, the
folded-flat state of our physical model is not strictly flat.

To better understand the relationship between the geometric parameters and the number of
stable states, we plot the phase diagram of stable states for CKO structures with a = 1 and b = 2
in figure 4 based on the above analytical solutions. As can be seen, in the yellow area as well as
at the AB, AF, BF and EF boundaries, the CKO is monostable. In the red area as well as at the
BC boundary, the CKO is bistable, and has a zero-energy stable state and a folded-flat non-zero-
energy stable state. In the green area as well as at the CD and CF boundaries, the CKO is also
bistable, but has two zero-energy stable states. Outside these areas, the geometric parameters do
not correspond to a quadrilateral unit cell, or the quadrilateral unit cell cannot form a stable CKO.
The analytical expressions of the boundaries are summarized below:

— At the ABCD boundary: b − 2c cos β = a, and the CKO consists of isosceles trapezoid unit
cells and its stable states are given by equations (2.19) and (2.20).

— At the EF boundary: λ = 1, and the stable state of the CKO is given by equation (2.18).
— At the AFC boundary: λ = sin(π/n + θ ) with θ = arccos((r2 + R2 − c2)/2rR), and the CKO

has a folded-flat zero-energy stable state at (h2, ϕ2) = (0, θ ).
— At the BF boundary, the relative twist angle ϕf of the CKO at the folded-flat state

equals ϕ0.

Several representative configurations for the monostable and bistable CKO structures are also
presented in figure 4. We can observe that for the same geometric parameters, with the increase of
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Figure 4. Phase diagrams characterizing the stable states for CKO structures with top edge length a= 1 and bottom edge
length b= 2. The solid boundaries belong to the bistable area, and the dash boundaries belong to the monostable area. The
insets correspond to the geometric configurations of the ‘circle’ symbol, the ‘triangle’ symbol and the ‘star’ symbol, respectively.
The number n of unit cells is (a) n= 6, (b) n= 8 and (c) n= 10. (Online version in colour.)

the number of unit cells, the heights at the stable states decrease for both monostable and bistable
CKO structures. Moreover, as the number of unit cells increases, the stable state region gradually
expands.

(c) Energy landscapes
Finally, we study the energy landscapes of CKO structures. According to equation (2.2), the elastic
energy U of a CKO depends on the height h and the twist angle ϕ. Therefore, when the two
variables are independent, we can obtain an energy surface of U by varying h and ϕ. However,
when a CKO is deployed under quasi-static tension or torsion, the two variables are coupled by
∂U/∂ϕ = 0 or ∂U/∂h = 0, respectively, because the force in the ϕ-direction (or h-direction) is zero.
Consequently, the energy landscape of a CKO under quasi-static tension or torsion is a curve on
the energy surface determined by ∂U/∂ϕ = 0 or ∂U/∂h = 0. To demonstrate this, we depict the
energy landscape of a bistable CKO with two zero-energy minima in figure 5a. It is seen that the
two energy curves are located at the valley of the energy surface, and have three intersections,
which are the three stationary points (h0, ϕ0), (h1, ϕ1) and (h2, ϕ2), respectively. Figure 5b presents
the two energy curves individually. We can observe that (h0, ϕ0) is the maximum energy point,
and (h1, ϕ1) and (h2, ϕ2) are two zero-energy points, which are in consistent with our analytical
solutions.

Figure 6 plots the variation of the dimensionless elastic energy with respect to the height of the
CKO under quasi-static axial tension for different lengths of mountain creases c by imposing
∂U/∂ϕ = 0. As can be seen, with the increase of the length of mountain creases, the height
corresponding to the stable state gradually gets higher. Moreover, the energy landscapes of CKO
structures with the same geometric parameters but different unit cell numbers are dramatically
different. For example, when c = 3.1, the energy landscape of the CKO consisting of 6 unit cells
has two zero-energy minima (figure 6a), and that consisting of 8 unit cells has one zero-energy
minimum and one non-zero-energy minimum (figure 6b), while the CKO with 10 unit cells has
only one zero-energy minimum (figure 6c). This suggests that the number of unit cells also has a
significant influence on the energy landscapes of CKO structures.

A bistable CKO needs to overcome an energy barrier to transit from one stable state to the
other. To understand the influence of geometric parameters on the energy barrier, a contour map
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Figure 5. Variation of the dimensionless elastic energy Ū (= U/EAc) with respect to the height h and the relative twist angle
ϕ of a bistable CKO with two zero-energy minima. (a) Energy landscape. (b) Energy curve determined by ∂U/∂h= 0 and
∂U/∂ϕ = 0. Geometric parameters of the unit cells are a= 1, b= 2, c = 5 andβ = 1.5. The number of unit cells is n= 6.
The three stationary points are (h0,ϕ0)= (4.6216,π/3), (h1,ϕ1)= (4.8924, 0.1791) and (h2,ϕ2)= (4.3185, 1.9153). (Online
version in colour.)
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Figure 6. Variation of the dimensionless elastic energy Ū (= U/EAc) with respect to the height h for different lengths of the
mountain creases c. The remaining geometric parameters of the unit cells are a= 1, b= 2 andβ = 1.5. The number n of unit
cells is (a) n= 6, (b) n= 8 and (c) n= 10. (Online version in colour.)

of the dimensionless energy barrier of a bistable CKO with two zero-energy states is provided in
figure 7. In this map, we fix the mountain crease c and stable-state height h2, and then vary the
values of edge length ratio a/b and stable-state height h1. It should be noted that the energy barrier
Umax of a bistable CKO with two zero-energy minima equals its maximum elastic energy, and
when it transforms from one stable state to the other under axial force or torque (i.e. ∂U/∂ϕ = 0
or ∂U/∂h = 0), the maximum elastic energy always occurs at the saddle point (h0, ϕ0) (see Proofs 2
and 3 in electronic supplementary material). According to figure 7, the energy barrier of a bistable
CKO decreases with the increase of the edge length ratio a/b, while increases as the stable-state
height h1 gets higher. Particularly, for a specific stable-state height and length of mountain crease,
the energy barrier of a bistable CKO composed of isosceles trapezoid unit cells is the highest,
which corresponds to the red boundary curve in figure 7. This contour map provides a heuristic
design strategy for target energy barriers in bistable CKO structures.

3. Curvature programming
Having identified the stability characteristic, we now use CKO tessellations to approximate
surfaces of revolution with various types of Gaussian curvatures. In this section, we will
develop two inverse design frameworks to achieve the goal. For the first design method, we can
approximate arbitrary surfaces of revolution. The approximated surfaces have rather arbitrary
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Figure 7. Contour map of the energy barrier of a bistable CKO for different values of edge length ratio a/b and stable-state
height h1. The length of the mountain crease is set to c = 1 and the stable-state height h2 is fixed at h2 = 0. The number of
unit cells is n= 6. (Online version in colour.)

cross-section radii along the height direction, but are non-developable (i.e. the designed structure
cannot be unfolded to a flat sheet). For the second design strategy, we can approximate surfaces of
revolution whose cross-section radii are monotonic, and the obtained structures are developable.
Thus the first method benefits a larger design space, while the second one has advantages in
fabrication due to its developability.

Consider a CKO tessellation consisting of m layers, and each layer has n quadrilateral unit cells.
As stated before, four geometric parameters are needed to characterize the unit cell. Theoretically,
there are 4m unknown geometric parameters in total for a CKO tessellation, i.e. ai, bi, ci and
βi, where the subscript i (= 1, 2, . . . , m) represents the parameters associated with the ith layer.
However, since the top edge of the ith layer shares the same parameter with the bottom edge of
the (i + 1)th layer (i.e. ai = bi+1), there are only 3m + 1 independent geometric parameters to be
determined, which are bi, bi+1, ci and βi (i = 1, 2, . . . , m).

Moreover, a general surface of revolution as the target surface can be defined by

f (
√

x2 + y2, z) = 0, z1 ≤ z ≤ z2, (3.1)

where z1 and z2 are prescribed constants.

(a) Non-developable CKO tessellation
To enable the inverse design, we firstly discretize the target surface into m layers so that each
segment can be approximated by a CKO unit composed of an array of quadrilateral unit cells.
Here, we use bistable CKO units with two zero-energy states to achieve the design. Specifically,
we exploit their first stable configurations to approximate the curved surfaces, and harness their
second stable configurations to package the structures in a small space. The two stable states in
the ith layer are denoted by (h(1)

i , ϕ(1)
i ) and (h(2)

i , ϕ(2)
i ), respectively. Then, we intend to find the
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constraints for the design. Based on equations (2.13) and (2.15), and considering ai = bi+1 and
ri = Ri+1, the geometric parameters of the bistable CKO unit in the ith layer should satisfy√

(h(1)
i )2 + R2

i + R2
i+1 − 2RiRi+1 cos ϕ

(1)
i = ci, i = 1, 2, . . . , m, (3.2)

sin
(
ϕ

(1)
i + π

n

)
= bi − 2ci cos βi

bi+1
sin

π

n
, i = 1, 2, . . . , m, (3.3)

√
(h(2)

i )2 + R2
i + R2

i+1 − 2RiRi+1 cos ϕ
(2)
i = ci, i = 1, 2, . . . , m (3.4)

and sin
(
ϕ

(2)
i + π

n

)
= bi − 2ci cos βi

bi+1
sin

π

n
, i = 1, 2, . . . , m. (3.5)

Moreover, the total height of all the CKO units at the first stable state should be equal to that of
the target surface of revolution, namely,

m∑
i=1

h(1)
i = z2 − z1. (3.6)

Meanwhile, the vertices of each CKO unit at the first stable state should be located on the target
surface, which gives

f (R1, z1) = 0 and f (Ri+1, z1 +
i∑

j=1

h(1)
j ) = 0, i = 1, 2, . . . , m. (3.7)

Finally, we determine the geometric parameters of each CKO unit. According to equations
(3.2)–(3.7), there are 7m + 1 unknowns including 3m + 1 geometric parameters (i.e. bi, bi+1, ci and
βi) and 4m stable-state parameters (i.e. h(1)

i , h(2)
i , ϕ

(1)
i and ϕ

(2)
i ). Therefore, if we prescribe the two

stable-state heights h(1)
i and h(2)

i for each layer (note that h(1)
i should satisfy equation (3.6)), in

principle, the remaining 5m + 1 parameters (i.e. bi, bi+1, ci, βi, ϕ
(1)
i and ϕ

(2)
i ) of all the CKO units can

be obtained layer-by-layer by solving the 5m + 1 constraints (i.e. equations (3.2)–(3.5) and (3.7)).
After determining the geometric parameters of the CKO unit in each layer, the approximated
target surface of revolution can be generated by assembling the CKO units layer-by-layer. The
Mathematica code for the solution is provided in electronic supplementary material data.

To illustrate the versatility of our design, we consider three typical surfaces of revolution in
figure 8a–c, namely, a hyperboloid of revolution, an ellipsoid of revolution, and a sinusoid of
revolution, as the target curved surfaces. These three surfaces show the capability of our method
in approximating surfaces of revolution with negative, positive and mixed Gaussian curvatures
(K < 0, K > 0, K < 0 and K > 0), respectively. For each example, we use six layers (i.e. m = 6) of
CKO with the number of unit cells n = 10 for each layer to approximate the target curved surface,
and presume that all the CKO units have equivalent heights at the first and second stable states
(h(1)

i = (z2 − z1)/m and h(2)
i = 0 for all i). By solving equations (3.2)–(3.5) and (3.7), we obtain the

geometric parameters of the CKO unit in each layer for our inverse design (results are provided
in electronic supplementary material, §S2). The numerical configurations and the paper models
(fabrication details are provided in electronic supplementary material, §S7) are presented in
figure 8. It can be seen that the deployed states of the CKO tessellations approximate the target
surfaces of revolution well, and the folded-flat states of the CKO tessellations allow them to be
packaged in a small space, which confirms the validity of our design strategy.

Remark 3.1. Note that for any given surfaces of revolution, by selecting appropriate values
for parameters n, h(1)

i and h(2)
i , we can always find the solutions of equations (3.2)–(3.5) and (3.7)

due to the flexible design space of CKO composed of general quadrilateral unit cells. This shows
that the present design strategy is applicable to approximating arbitrary surfaces of revolution.
However, since this method does not consider the developability conditions between adjacent
layers, the designed CKO tessellations cannot be guaranteed to be developable. In other words,
the 3D structures cannot be unfolded into flat sheets. Although this issue will increase the
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Figure 8. Approximations of target surfaces of revolution by using non-developable CKO tessellations. (a) Hyperboloid of
revolution with negative Gaussian curvature (K < 0). The function of the target surface is (x2 + y2)/9 − (3z2)/25= 1
with−5≤ z ≤ 5. (b) Ellipsoid of revolution with positive Gaussian curvature (K > 0). The function of the target surface is
(x2 + y2)/36 + (3z2)/100= 1 with−5≤ z ≤ 5. (c) Sinusoid of revolution with mixed curvature (K < 0 and K > 0). The
function of the target surface is

√
x2 + y2 = 2 sin(−0.6z) + 4 with−5≤ z ≤ 5. (Online version in colour.)

difficulty in manufacturing the origami structures, it can be overcome by using other methods,
for example, 3D printing.

(b) Developable CKO tessellation
Next, we show how to approximate target surfaces of revolution using CKO tessellations which
are developable. The crease pattern of a developable CKO tessellation is shown in figure 9a, which
comprises m × n quadrilateral unit cells and each unit cell can be characterized by bi, bi+1, ci
and βi (i = 1, 2, . . . , m). The developability condition can be determined in terms of the geometric
parameters of the CKO.

(i) Developability condition

The condition for a CKO tessellation that can be folded from a flat sheet (i.e. developable) is that
at each interior vertex, the sum of the angles between the adjacent edges equals 2π (figure 9b),
which reads

αi + βi + γi−1 + δi−1 = 2π , i = 2, 3, . . . , m. (3.8)

Considering γi−1 + δi−1 = 2π − αi−1 − βi−1, the developability condition can be rewritten as

αi + βi = αi−1 + βi−1, i = 2, 3, . . . , m, (3.9)

in which

αi = arccos

(
b2

i + d2
i − c2

i
2bidi

)
+ arccos

(
c2

i + d2
i − b2

i+1

2cidi

)
, i = 1, 2, . . . , m. (3.10)

It can be seen from equations (3.9) and (3.10) that the geometric parameters (bi, bi+1, ci, βi) are all
incorporated in the developability condition. Combining it with the constraints in §3a, the inverse
problem for developable CKO tessellations that approximate target surfaces of revolution can be
solved.
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Figure 9. Crease pattern of a developable CKO tessellation. (a) Schematic of the crease pattern consisting of m × n
quadrilateral unit cells. (b) Schematic of four adjacent unit cells sharing a vertexwith the labels of geometric parameters. (Online
version in colour.)

(ii) Inverse design framework

There are 6m + 1 constraints (i.e. equations (3.2)–(3.7) and (3.9)), and 7m + 1 unknown variables
(i.e. bi, bi+1, ci, βi, h(1)

i , h(2)
i , ϕ

(1)
i and ϕ

(2)
i ). In the following, we prescribe the stable-state height h(2)

i
so that the number of variables equals that of constraints, leading to a closed solvable equation
system. Specifically, similar to the previous case, we assume that the CKO tessellation has a
folded-flat zero-energy stable state, i.e. h(2)

i = 0. We then employ an optimization algorithm to
solve the inverse problem for the CKO tessellation.

The unknown parameters (bi, bi+1, ci, βi, h(1)
i , ϕ

(1)
i , ϕ

(2)
i ) are selected as the optimization

variables, and their initial values for the optimization inherit from the analytical method in §3a.
Equations (3.2)–(3.6) and (3.9) are set as the constraints, and the square of equation (3.7) is chosen
as the objective function. In summary, the optimization problem can be described as

Find : (bi, bi+1, ci, βi, h(1)
i , ϕ(1)

i , ϕ(2)
i ), i = 1, 2, . . . , m.

Minimize : [f (R1, z1)]2 and

⎡
⎣f (Ri+1, z1 +

i∑
k=1

h(1)
k )

⎤
⎦

2

, i = 1, 2, . . . , m.

s.t. :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2
i − R2

i − R2
i+1 + 2RiRi+1 cos ϕ

(1)
i − [h(1)

i ]2 = 0, i = 1, 2, . . . , m,

sin
(
ϕ

(1)
i + π

n

)
− (bi−2ci cos βi) sin(π/n)

bi+1
= 0, i = 1, 2, . . . , m,

c2
i − R2

i − R2
i+1 + 2RiRi+1 cos ϕ

(2)
i − [h(2)

i ]2 = 0, i = 1, 2, . . . , m,

sin
(
ϕ

(2)
i + π

n

)
− (bi−2ci cos βi) sin(π/n)

bi+1
= 0, i = 1, 2, . . . , m.∑m

i=1 h(1)
i − (z2 − z1) = 0,

αi + βi − αi−1 − βi−1 = 0, i = 2, 3, . . . , m.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

By using the multiobjective optimization function fgoalattain in Matlab, the geometric parameters
of a developable CKO tessellation that approximates a target surface of revolution can be
determined. The Matlab code for the optimization is given in electronic supplementary material
data. To demonstrate this design method, we use a CKO tessellation with m = 6 and n = 10 to
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Figure 10. Approximations of target surfaces of revolutionbyusingdevelopable CKO tessellations. (a) Hyperboloid of revolution
with negative Gaussian curvature (K < 0). The function of the target surface is (z + 6)

√
x2 + y2 = 54 with 0≤ z ≤ 12.

(b) Paraboloid of revolution with positive Gaussian curvature (K > 0). The function of the target surface is x2 + y2 + 6z =
81 with 0≤ z ≤ 12. (c) Cone of revolution with zero Gaussian curvature (K = 0). The function of the target surface is
2
√
x2 + y2 + z = 18 with 0≤ z ≤ 12. (Online version in colour.)

approximate various surfaces of revolution shown in figure 10a–c. By employing the proposed
optimization algorithm, we obtain the optimized geometric parameters of the CKO tessellation,
which are provided in electronic supplementary material, §S3. With the help of laser cutter, we
fabricate the corresponding paper models (fabrication details refer to electronic supplementary
material, §S7). From figure 10, one can see that the deployed states of the CKO tessellations folded
from a flat sheet closely approach the target surfaces of revolution with different types of Gaussian
curvatures. Also, our paper models show that the designed CKO tessellations are flat-foldable.

Remark 3.2. It is worth noting that the developable CKO tessellations can only approximate
surfaces of revolution whose cross-section radii along the height direction are monotonic. If the
radii are not monotonic, the slope of the generator of the surface will change the sign in the
direction along its height (see the three target surfaces in figure 8) and therefore a segment
containing a point with infinite slope emerges. At this segment, a TKO cell is required to connect
with other layers. However, the developability condition cannot be satisfied in this case, since
αi + βi = π for a TKO pattern while αi + βi �= π for a CKO pattern. Thus, the assembly of a TKO
and a CKO is non-developable.

(iii) Discussion

Approximating 3D curved surfaces has been achieved in various types of origami, such as the
Miura origami [24] and the waterbomb origami [28]. Compared to the degree-4 vertex Miura cells
and the degree-6 vertex waterbomb cells, our CKO cells have only one diagonal crease, greatly
reducing the difficulty in manufacturing the physical models. In addition, the relatively simple
crease pattern also simplifies the design method as well as improves the computational efficiency.
For example, our design equations for the non-developable CKO tessellation can be analytically
solved, and our optimization algorithm for the developable CKO tessellation can converge to
the optimal solutions in just a few seconds. Consequently, the origami tool and methodology
proposed in the present work provide a simple and efficient strategy for the inverse design of 3D
surfaces of revolution.
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4. Energy programming
Energy barrier and stable-state height are two key parameters in characterizing the mechanical
performance of bistable or multistable structures [50,51]. In this section, we will demonstrate how
to design a multistable CKO tessellation with prescribed energy barriers and stable-state heights.
For this goal, we formulate a multiobjective optimization problem. Specifically, we consider a
CKO tessellation consisting of m layers, in which the CKO unit in the ith (i = 1, 2, . . . , m) layer has
two zero-energy stable states at the heights h(1)

i and h(2)
i and attains an energy barrier Umax

i . The
parameters to be determined are the geometric parameters (bi, bi+1, ci, βi) of the CKO cells, the
height h(0)

i corresponding to the maximum elastic energy (i.e. the energy barrier), and the relative

twist angles ϕ
(1)
i and ϕ

(2)
i associated with the stable-state height h(1)

i and h(2)
i . To establish a general

design framework, all the parameters are non-dimensionalized by

b̄i = bi

c1
, b̄i+1 = bi+1

c1
, c̄i = ci

c1
, h̄(0)

i = h(0)
i
c1

, Ūmax
i = Umax

i
EAc1

, i = 1, 2, . . . , m. (4.1)

For real demonstrations, one can rescale the target quantities such as the energy barrier with
corresponding parameters. Note that we specify c1 = 1 in all the examples.

When the energy barrier Ūmax
i and two stable-state heights h̄(1)

i and h̄(2)
i of the CKO unit in

each layer are prescribed, the unknown parameters should satisfy the following relations:

— The geometric parameters (b̄i, b̄i+1, c̄i, βi) and the relative twist angle ϕ
(1)
i and ϕ

(2)
i should

satisfy the stability conditions equations (3.2)–(3.5).
— The height h̄(0)

i and the relative twist angle ϕ
(0)
i corresponding to the maximum elastic

energy should satisfy equation (2.9), in which ϕ
(0)
i = π/2 − π/n.

— The maximum elastic energy Ūi(h̄
(0)
i , ϕ(0)

i ) should be equal to the target energy barrier
Ūmax

i .

By selecting equations (3.2)–(3.5) and (2.9) as the constraints, and the difference between the
maximum elastic energy and the target energy barrier as the objective function, the optimization
problem can be formulated as

Find : (b̄i, b̄i+1, c̄i, βi, h̄(0)
i , ϕ(1)

i , ϕ(2)
i ), i = 1, 2, . . . , m.

Minimize : k[Ūi(h̄
(0)
i , ϕ(0)

i ) − Ūmax
i ]2, i = 1, 2, . . . , m.

s.t. :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄2
i − R̄2

i − R̄2
i+1 + 2R̄iR̄i+1 cos ϕ

(1)
i − [h̄(1)

i ]2 = 0, i = 1, 2, . . . , m,

sin
(
ϕ

(1)
i + π

n

)
− (b̄i−2c̄i cos βi) sin(π/n)

b̄i+1
= 0, i = 1, 2, . . . , m,

c̄2
i − R̄2

i − R̄2
i+1 + 2R̄iR̄i+1 cos ϕ

(2)
i − [h̄(2)

i ]2 = 0, i = 1, 2, . . . , m,

sin
(
ϕ

(2)
i + π

n

)
− (b̄i − 2c̄i cos βi) sin

(
π
n
)
/b̄i+1 = 0, i = 1, 2, . . . , m.

1
c̄i

− 1
c̃i(h

(0)
i ,ϕ0

i )
+ 1

d̄i
− 1

d̃i(h
(0)
i ,ϕ0

i )
= 0, i = 1, 2, . . . , m,

c̄1 = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

Here, we premultiply a factor k in the objective function to amplify the magnitude of the error
and hence improve the accuracy of the optimization. The optimization problem described in
equation (4.2) can be solved by the function fgoalattain in Matlab, and the related code is provided
in electronic supplementary material data. The accuracy of the optimized results significantly
depends on the initial values of the variables, and the details of how to find ideal initial values
are presented in electronic supplementary material.

Remark 4.1. From equation (4.2), we find that there are m objective functions and 5m + 1
independent constraints, then the total number (6m + 1) is exactly equal to the number of
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Figure 11. Optimized energy landscapes and stable-state configurations of bistable CKO structures. The target parameters are
set as (a) h̄(1)1 = 0.8, h̄(2)1 =[0.2, 0.4, 0.6] and Ū

max
1 = 0.001; (b) h̄(1)1 = [0.6, 0.7, 0.8], h̄(2)1 = 0.2 and Ūmax1 = 0.001; (c) h̄(1)1 = 0.8,

h̄(2)1 = 0.2 and Ūmax1 = [0.002, 0.004, 0.006]; (d) h̄(1)1 = 0.6, h̄(2)1 = 0.2 and Ūmax1 = 0.0001. (Online version in colour.)

optimization variables. Therefore, (4.2) is closed, suggesting that the energy landscape of a CKO
tessellation can be programmed by our optimization framework. However, for a TKO tessellation,
we have bi = bi+1, then the number of optimization variables are reduced to 5m + 1, which is
less than the sum of constraints and objective functions. Consequently, the optimization problem
in this case is over-constrained, which indicates that the TKO tessellation is not capable of
programming all the stable-state heights and energy barriers simultaneously.

To demonstrate the design strategy, we firstly consider several examples in figure 11 for the
inverse design of bistable CKO with various target energy barriers and stable-state heights. In
each example, there are three target parameters, i.e. h̄(1)

1 , h̄(2)
1 and Ūmax

1 . For the examples in
figure 11a–c, we set two of them to be the same but change the remaining one, and then use 10
unit cells to find the optimal solutions. The target parameters of these examples are provided
in the caption of figure 11. The optimized results for the geometric parameters are given in
electronic supplementary material, table S6. By using these geometric parameters, we plot the
corresponding energy landscapes as well as the stable-state configurations of the designed CKO
structures. The energy landscapes of these structures all exhibit typical bistability characteristics.
More importantly, the stable-state heights and energy barriers are in great agreement with the
target parameters. In figure 11d, the three target parameters of each example are all set to be
the same, while we use 6, 8 and 10 unit cells to explore the optimal solutions, respectively. The
optimized results are also presented in electronic supplementary material, table S6. It is seen from
figure 11d that with the same target parameters but different numbers of unit cells, the optimized
energy curves nearly overlap, showing that the number of unit cells is less important in this
optimization. These examples indicate that the proposed optimization algorithm is effective and
accurate for the inverse design of bistable CKO with the prescribed energy barrier and stable-state
heights.

Next, we present two examples, a bilayer CKO tessellation and a trilayer CKO tessellation,
in figure 12 for the inverse design of multistable CKO tessellations with predefined stable-state
parameters. The target parameters of the two examples are given in the caption of figure 12. By
selecting appropriate initial values and factor k, we obtain the optimized geometric parameters
of the two CKO tessellations and the results are enclosed in §S5 of electronic supplementary
material. With these parameters, figure 12a,b depicts the optimized energy landscapes of the
bilayer and trilayer CKO tessellations, respectively. As can be seen, the bilayer and trilayer CKO
tessellations undergo three and four stable states, respectively, upon folding. In particular, both
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bottom layer corresponds to the first layer represented by the subscript 1. (Online version in colour,)

of them collapse sequentially according to the energy barrier of each layer from low to high. To
verify the theoretical results, we perform FE simulations for the quasi-static compression process
of the two designed CKO tessellations, and obtain the elastic energy associated with different
displacements. The details of the FE simulations are provided in §S6 of electronic supplementary
material, and the results are presented in figure 12. The figures show excellent agreements
between the results of our theoretical modelling and the FE simulations. More importantly,
both results perfectly approach the target parameters, which demonstrates that our strategy is
robust and capable of achieving a series of target stable-state parameters for multistable CKO
tessellations. We also observe from the simulations that when the first layer collapses, the other
layers also deform. However, the deformations of the other layers are much smaller than those
of the collapsed layer due to their higher effective stiffness. To illustrate this, we provide the
energy curve of each layer and the force–displacement curves of the two CKO tessellations during
the entire folding process obtained by FE simulations in electronic supplementary material, §S6.
The results confirm that the remaining layers experience negligible deformations when the first
layer collapses. Furthermore, since our design method for programming energy is based on the
elastic truss model, we provide an effective strategy for designing origami-based multistable truss
structures with programmable mechanical properties.

5. Concluding remarks
In this work, we have developed a generalized design framework for conical Kresling origami
composed of general quadrilateral unit cells. Through theoretical modelling and analysis, we
obtain the analytical solutions and the design spaces of its stable states, and then identify the
effect of geometric parameters on its energy landscape. We find that by employing free-form
quadrilateral unit cells, the design space of traditional Kresling origami can be enlarged without
loss of its remarkable bistability characteristic. Importantly, benefiting from the additional
degrees of freedom offered by the general quadrilateral unit cells, the conical Kresling origami
enables many useful designs which cannot be achieved by the traditional Kresling pattern,
such as programming curvature of curved surfaces and programming energy landscapes of
multistable structures. Therefore, the present work provides a new perspective for the design of
deployable structures, including shape-morphing devices, reconfigurable space antennas, fluidic
soft actuators and multi-modal robots. Also, the conical Kresling origami can serve as a powerful
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tool to design multistable metamaterials with desired energy absorption ability or deformation
sequence.
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