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I. KIRIGAMI STRIPS

We refer to SQK with more than two columns and rows as SQK tessellations, and those with only two columns or
rows as SQK strips. A 10× 2 SQK strip is illustrated in Fig. S1(a). The values of opening angles can be transmitted
throughout the kirigami strip by the fact that each single quadrilateral void has one free opening angle and the
opposite angles at the same vertex sum to π. For example, as shown in Fig. S1(b), we can see that γ1 + β2 = π
and δ2 + α3 = π. As a result, the kirigami strip can be continuously deployed with a single degree of freedom. The
deformation formulation of the SQK strips can be included in the framework of general M × N SQK tessellations,
which we will show below.

(a) (b)

FIG. S1. SQK strips. (a) A SQK strip and its deployed configuration at ω = 0.5π. (b) The opening angles can be transmitted
over the slits by the constraints that the opposite angles of adjacent slits sum to π.

II. GEOMETRY OF A SINGLE SLIT

A single slit of SQK strips or tessellations is deployed to a convex spherical quadrilateral void. We use K to denote
the Gaussian curvature of the sphere. As shown in Fig. S2, the spherical quadrilateral F2X1F1X2 is formed by the
great-circle arcs a, b, c, d ∈ (0, π/

√
K) with opening angles α, β, γ, δ ∈ (0, π). The quadrilateral void can be divided

into two spherical triangles F2X1X2 and X1F1X2 by connecting the vertices X1 and X2 via a geodesic curve, or into
spherical triangles F2X1F1 and F2F1X2 by connecting the vertices F1 and F2. Following the spherical cosine rules,
we have
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√
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FIG. S2. Notations of a convex spherical quadrilateral void F2X1F1X2 of side lengths a, b, c, d, and opening angles α, β, γ, δ.
This void is formed by a deployed slit of SQK strips or tessellations, so that the side lengths satisfy a+ b = c+ d. In addition,
the quadrilateral void can be determined by two points X1, X2 on a spherical ellipse with foci F1, F2.

The differential forms of Eqs. (S1) and (S2) are
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√
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√
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, (S3)
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Denote the area of the spherical triangle F2X1X2 as Sα. The area Sα can be determined by the side lengths a, d, and
the included angle α:

tan(KSα/2) =
tan(a

√
K/2) tan(d

√
K/2) sinα

1 + tan(a
√
K/2) tan(d

√
K/2) cosα

. (S5)

We will find the following trigonometric identities useful:

sin(KSα) =
2 tan(KSα/2)

1 + tan2(KSα/2)
, (S6)

cos(KSα) =
1− tan2(KSα/2)

1 + tan2(KSα/2)
, (S7)

tan(KSα) =
2 tan(KSα/2)

1− tan2(KSα/2)
. (S8)

We also have the following differential relationship:

d(KSα)

dα
= cos2 (KSα)

d tan(KSα)

dα
. (S9)

Substituting Eqs. (S5), (S7), (S8) into Eq.(S9) we obtain

A(α,K) , 1− d(KSα)
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√
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. (S10)

In the same way, we denote Sγ as the area of the spherical triangle X1F1X2, and define the function B(γ,K) by

B(γ,K) , 1− d(KSγ)

dγ
=

cos(b
√
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√
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. (S11)

The interior angle summation and the spherical quadrilateral area have the following relationship:

α+ β + γ + δ = 2π +KSα +KSγ . (S12)
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The differential form of Eq. (S12) is

dα+ dβ + dγ + dδ = d(KSα) + d(KSγ). (S13)

Eqs. (S1), (S2), (S12) indicate that the spherical quadrilateral void has a single degree-of-freedom upon deployment
(three equations with four unknowns α, β, γ, δ). Substituting Eqs. (S3), (S4), (S10), (S11) into Eq. (S13), we obtain
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√
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√
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Besides, we have the identity
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√
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√
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√
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√
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√
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√
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We will prove Eq. (S15) later in Section III. Substituting Eq. (S15) into Eq. (S14), we obtain

dβ

dα
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√
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sin(b
√
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. (S16)

We define the relationship between α and β by

cosβ = ḡ(cosα; a, b, c, d,K). (S17)

Since β = ^F1X1X2 + ^X2X1F2, we can use the spherical cosine rules and derive the explicit expression of ḡ:
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√
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√
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√
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(S18)

where e is the length of the diagonal X1X2. If the side lengths a, b, c, d are given, the opening angles β, γ, δ are
uniquely and explicitly determined by α according to Eqs. (S1), (S2), (S17), and (S18). The derivative of ḡ with
respect to cosα can be obtained from Eqs. (S16) and (S17):

ḡ′[cosα; a, b, c, d,K] =
d cosβ

d cosα
= − sin(d

√
K) sinβ sin δ

sin(b
√
K) sinα sin γ

. (S19)

In the Main Text, following the notations in Fig. 2(a), we denote the relationships between adjacent slits in 3 × 3
SQK tessellations by

cosβi = gi(cosβi+1). (S20)

Meanwhile, the opening angle βi can also be determined by αi:

cosβi = ḡ[cosαi; ai, bi, ci, di,K]. (S21)

Remind that we have the following complementary relationships:

cosαi = − cosβi+1. (S22)

Combining Eqs. (S20)–(S22), we obtain the expressions of gi and g′i:

gi(cosβi+1) = ḡ[− cosβi+1; ai, bi, ci, di,K], (S23)

g′i(cosβi+1) = −ḡ′[− cosβi+1; ai, bi, ci, di,K], (S24)

where the index i cycles from 1 to 4.
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III. CONVEXITY OF THE LOOP FUNCTION

Analogous to Eqs. (S23) and (S24), we can write the expressions of g′′i :

g′′i (cosβi+1) = ḡ′′[− cosβi+1; ai, bi, ci, di,K]. (S25)

Taking the derivative of ḡ′, and combining Eqs. (S3), (S4), (S16), we obtain

ḡ′′[cosα; a, b, c, d,K] = k̄g

[
− sin(a

√
K) sin(d

√
K) sinα cot γ − sin(b

√
K) sin(c

√
K) sin γ cotα

− sin(a
√
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√
K) sinβ cot δ − sin(c

√
K) sin(d

√
K) sin δ cotβ

]
, (S26)

where the coefficient k̄g is

k̄g =
sinβ sin δ sin(d

√
K)

sin2 α sin2 γ sin2(b
√
K) sin(c

√
K)

> 0. (S27)

The side lengths a, b, c, d of quadrilateral voids extracted from an SQK strip or tessellation are constrained by a+ b =
c + d, which means that the quadrilateral voids can be determined by two points and two foci of spherical ellipses.
Fig. S2 illustrates a spherical ellipse with major axis length 2l and focal distance 2f , satisfying 0 < f

√
K < l

√
K < π/2.

The foci F1, F2 and two points X1, X2 on the ellipse determine the spherical quadrilateral F2X1F1X2. We set up a
Cartesian coordinate system located at the spherical center O = (0, 0, 0), such that the coordinates of the foci F1, F2

and points X1, X2 are given by

F1 =
(
− sin(f

√
K)/
√
K, 0, cos(f

√
K)/
√
K
)
,

F2 =
(

sin(f
√
K)/
√
K, 0, cos(f

√
K)/
√
K
)
,

X1 = (x1, y1, z1),

X2 = (x2, y2, z2).

(S28)

The points X1, X2 are located at different sides of the plane OF1F2, and therefore can be parametrized by θ1 ∈ (0, π)
and θ2 ∈ (−π, 0):

xj = sin(l
√
K) cos θj/

√
K,

yj =

√
sin2(l

√
K)− sin2(f

√
K)

cos2(f
√
K)

sin θj/
√
K,
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sin2 θj

cos2(f
√
K)

cos(l
√
K)/
√
K,

(S29)

for j = 1, 2. Using the locations of vertices F1, F2, X1, X2, we can obtain the following expressions:

sin(d
√
K) sin(a

√
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√
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√
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√
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√
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sin(c
√
K) sin(d

√
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(S30)
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√
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√
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sin(a
√
K) sin(b

√
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√
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√
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√
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K) cos δ = K2 (X2 × F2) · (X2 × F1) .

(S31)

Substituting Eqs. (S28) and (S30) into the numerator and denominator of the left side of Eq. (S15), we find that

sin(c
√
K) sin(d

√
K) sin δ + sin(a

√
K) sin(b

√
K) sinβ = (y1 − y2)

√
K sin(2f

√
K),

B(γ,K) sin(a
√
K) sin(d

√
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√
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√
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√
K sin(2f

√
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(S32)
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FIG. S3. The 3 × 3 SQK tessellations with only one compatible state. (a) g′(−1) < 1; cosβ1 = −1 (left), 0 (middle), 0.816
(right). (b) g′(−1) > 1; cosβ1 = −1 (left), −0.5 (middle), −0.143 (right). (c) Curves of the loop function g(cosβ1).

Therefore, Eq. (S15) is verified. Now we prove ḡ′′i > 0. Substituting Eqs. (S28)–(S31) into Eq. (S26), we can obtain

ḡ′′ = k̄g

(
sin2(f

√
K)− sin2(l

√
K)

sin θ1 sin θ2

)
tf1 cos2(l

√
K) + tf2 sin2(l

√
K)

tf3 cos2(l
√
K) + tf4 sin2(l

√
K)

. (S33)

The coefficient functions are

tf1 =4 sin2(f
√
K) tan2(f

√
K)(kf2 sin θ1 − kf1 sin θ2)2 sin2 θ1 sin2 θ2 − sin2(f

√
K)(sin2 θ1 − sin2 θ2)2,

tf2 = cos2(f
√
K)
[
2 sin2 θ1 − sin2(θ1 − θ2) + 2 sin2 θ2

]
sin2(θ1 − θ2),

tf3 = sin2(f
√
K)(kf2 sin θ1 − kf1 sin θ2)2,

tf4 =− cos2(f
√
K) sin2(θ1 − θ2),

(S34)

where kf1,2 =
√

cos2 θ1,2 + sin2 θ1,2/cos2(f
√
K). Considering 0 < f

√
K < l

√
K < π/2, θ1 ∈ (0, π), θ2 ∈ (−π, 0), we

can verify that

sin2(f
√
K)− sin2(l

√
K)

sin θ1 sin θ2
> 0. (S35)

tf3 cos2(l
√
K) + tf4 sin2(l

√
K) =

sin(a
√
K) sin(b

√
K) sin(c

√
K) sin(d

√
K) cos2(f

√
K) sinα sin γ

sin2(l
√
K)− sin2(f

√
K)

> 0, (S36)

tf2 = cos2(f
√
K)

[
2 sin2 θ1 sin2 θ2 + (sin θ1 + sin θ2)

2

+ 2 (cos θ1 cos θ2 − 1) sin θ1 sin θ2

]
sin2(θ1 − θ2) > 0, (S37)

tf1 cos2(f
√
K) + tf2 sin2(f

√
K) = 4 sin2(f

√
K) sin2 θ1 sin2 θ2

[
cos2(f

√
K) sin2(θ1 − θ2)

+ sin2(f
√
K)(kf2 sin θ1 − kf1 sin θ2)2

]
> 0, (S38)

tf1 cos2(l
√
K) + tf2 sin2(l

√
K) > min

{
tf1 cos2(f

√
K) + tf2 sin2(f

√
K), tf2

}
> 0. (S39)

As a result, we conclude ḡ′′ > 0. Finally, following Eq. (S25), we prove g′′i > 0. In the Main Text, this result is used
to prove the convexity of the loop function g, and to prove that the compatibility condition has at most two roots
on the feasible domain [−1, cr]. Examples of 3× 3 SQK tessellations with two compatible states are provided in the
Main Text. Here we supplement two cases with only one compatible state in Fig. S3.
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For the 3× 3 SQK tessellations composed of slits with ai = ci and bi = di, the opening angles satisfy αi = γi and
βi = δi. Thus, we have

2αi + 2βi = 2π + 2KSαi
, (S40)

and it follows that

cosβi = − sin(KSαi) sinαi − cos(KSαi) cosαi. (S41)

In this case, the relationships between opening angles of adjacent slits are denoted by cosβi = gei (cosβi+1). Combining
Eqs. (S5)–(S7), and (S41), we can obtain

gei (cosβi+1) =
cosβi+1[1 + cos(ai

√
K) cos(bi

√
K)]− sin(ai

√
K) sin(bi

√
K)

[1 + cos(ai
√
K) cos(bi

√
K)]− cosβi+1 sin(ai

√
K) sin(bi

√
K)

. (S42)

Eq. (S42) can also be written in a compact form:

gei (x) =
(Pi +Qi)x+ (Pi −Qi)
(Pi +Qi) + (Pi −Qi)x

, (S43)

where Pi = cos2[(ai + bi)
√
K/2] and Qi = cos2[(ai− bi)

√
K/2]. Then, the composition of gei and gej can be calculated

by

gei ◦ gej (x) =
(PiPj +QiQj)x+ (PiPj −QiQj)
(PiPj +QiQj) + (PiPj −QiQj)x

. (S44)

Finally, we obtain the loop function:

ge(x) = ge1 ◦ ge2 ◦ ge3 ◦ ge4(x) =
(P +Q)x+ (P −Q)

(P +Q) + (P −Q)x
, (S45)

where P =
∏4
i=1 Pi and Q =

∏4
i=1Qi.

IV. FORMULATIONS OF THE COMPATIBLE CONFIGURATIONS

We formulate the undeployed M × N SQK patterns by solving a nonlinear equation system under the given
boundary conditions and cut ratios. As illustrated in Fig. S4(a), the slits of an SQK tessellation are divided by
their intersecting neighbors into four segments, so that they form quadrilateral voids when deployed. These slits are
categorized into horizontal slits [Fig. S4(a), top left] and vertical slits [Fig. S4(a), top right], depending on the opening
directions indicated by the blue arrows. The panels are denoted by Pi,j , and the slits by Ci,j . For each slit Ci,j , we
systematically denote the side lengths by ai,j , bi,j , ci,j , di,j , and the opening angles by αi,j , βi,j , γi,j , δi,j . The two
vertices where the slit Ci,j is divided are denoted by xi,j and x′i,j . In addition, the deployed vertices are denoted by

yi,j and y′i,j . To parameterize the shapes of quadrilateral voids, we use kbi,j and kdi,j to denote the ratios by which the

slit Ci,j is divided by the intersecting slits, i.e., kbi,j = bi,j/(ai,j + bi,j) and kdi,j = di,j/(ci,j + di,j). Finally, we define

the kinematic parameter ω , β2,2, and use ω? to denote the kinematic parameter at a compatible state.
We establish a Cartesian coordinate system located at the spherical center, so that the positions of vertices can be

determined by the spherical coordinates (longitude φ and latitude θ) as

xi,j = (cos θi,j cosφi,j , cos θi,j sinφi,j , sin θi,j)/
√
K,

x′i,j = (cos θ′i,j cosφ′i,j , cos θ′i,j sinφ′i,j , sin θ
′
i,j)/
√
K.

(S46)

We define the function dg(v1,v2) = arccos[(v1 ·v2)/(‖v1‖‖v2‖)] to calculate the scaled geodesic distance between two
points v1 and v2 on the sphere. Since the slits are geodesic lines, the vertices of an M ×N undeployed SQK pattern
should satisfy the following nonlinear constraints

f̃1i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , dg(xi,j ,x

′
i+1,j)− kbi,jdg(xi−1,j ,x′i+1,j) = 0, mod(i+ j, 2) = 0,

f̃2i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , dg(x

′
i,j ,xi−1,j)− kdi,jdg(x′i+1,j ,xi−1,j) = 0, mod(i+ j, 2) = 0,

f̃1i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , dg(xi,j ,xi,j+1)− kbi,jdg(x′i,j−1,xi,j+1) = 0, mod(i+ j, 2) = 1,

f̃2i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , dg(x

′
i,j ,x

′
i,j−1)− kdi,jdg(xi,j+1,x

′
i,j−1) = 0, mod(i+ j, 2) = 1,

(S47)
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(b)

(c)

(a)

FIG. S4. Kinematics of SQK tessellations. (a) Geometric notations of the undeployed configuration and the deployed config-
uration of a SQK tessellation. The tessellation is compatible at cosω? = −1, 0. (b) The SQK tessellation with kbi,j = kdi,j has
two compatible states at cosω? = ±1. If we disconnect the panels at the purple spots, the tessellation is split into two strips
linked at the green spots, and can be rigidly deployed. Each purple spot is divided into two spots (middle), and merge again
at cosω? = 1 (right). (c) The SQK tessellation is optimized to be compatible at cosω? = 0 (middle). The purple spots split
apart when cosω > 0 (right).

f̂1i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , (x′i+1,j × xi,j) · xi−1,j = 0, mod(i+ j, 2) = 0,

f̂2i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , (xi−1,j × x′i,j) · x′i+1,j = 0, mod(i+ j, 2) = 0,

f̂1i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , (xi,j+1 × xi,j) · x′i,j−1 = 0, mod(i+ j, 2) = 1,

f̂2i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) , (x′i,j−1 × x′i,j) · xi,j+1 = 0, mod(i+ j, 2) = 1,

(S48)

for i = 1, ...,M − 1 and j = 1, ..., N − 1. Eq. (S47) describes the constraints of side-length ratios, and Eq. (S48)
restricts that vertices of the same slit are on the same great circle. Fixing the boundary vertices of the tessellation,
i.e., xLj , xRj , xBi , and xUi for the left, right, bottom, and upper boundaries, respectively, we can write the boundary
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conditions for Eqs. (S47) and (S48) as

x0,j = x′0,j = xLj , mod(i+ j, 2) = 0,

xM,j = x′M,j = xRj , mod(i+ j, 2) = 0,

xi,0 = x′i,0 = xBi , mod(i+ j, 2) = 1,

xi,N = x′i,N = xUi , mod(i+ j, 2) = 1,

(S49)

for i = 0, 1, ...,M and j = 0, 1, ..., N . Given the cut ratios kbi,j and kdi,j , there are two equations and two unknowns
(the φ and θ coordinates) for each interior vertex xi,j or x′i,j according to Eqs. (S47) and (S48), so that the nonlinear
equation system is closed. We use the function fmincon in Matlab R2020b to solve Eqs. (S47)–(S49). As a result,
we can obtain the positions of the interior vertices xi,j and x′i,j , and consequently the SQK pattern.

In the Main Text, we have proved that the SQK tessellations with kbi,j = kdi,j have two compatible states at
cosω? = ±1. In what follows, we will shift the latter compatible state from cosω? = 1 into cosω? ∈ (−1, 1),
and construct corresponding SQK tessellations. Firstly, we relax the constraints by disconnecting links between
some panels, such that the tailored tessellations become rigidly deployable. For example, Fig. S4(b) illustrates the
disconnected links (purple spots) of a 4 × 4 square SQK tessellation with kbi,j = kdi,j = 0.45. In general, to relax an
M ×N tessellation, we disconnect adjacent panels at the vertices x2p,2q (p ≥ 1, q ≥ 2) and x′2p,2q (p ≥ 1, q ≥ 1). We
use Ri,j to denote the rigid transformations of the panels Pi,j relative to the panel P1,1. The transformations Ri,j
can be calculated by iteratively superimpose the rotation of a panel over its neighbor on the bottom (j > 1), or on
the left (j = 1). This procedure can be formulated as follows:

R1,1 = I, i = 1, j = 1,

Ri,1 = R(γi−1,0,Ri−1,1xi−1,1)Ri−1,1, mod(i+ 1, 2) = 1, j = 1,

Ri,1 = R(−αi−1,1,Ri−1,1x′i−1,0)Ri−1,1, mod(i+ 1, 2) = 0, j = 1,

Ri,j = R(αi,j−1,Ri,j−1xi−1,j−1)Ri,j−1, mod(i+ j, 2) = 1, j > 1,

Ri,j = R(−γi−1,j−1,Ri,j−1x′i,j−1)Ri,j−1, mod(i+ j, 2) = 0, j > 1,

(S50)

where I is the identity transformation, and R(ϕ,x0) is the rotation transformation around x0 on the sphere, defined
by

R(ϕ,x0)x :=
x0(x0 · x)

‖x0‖2
+

(x0 × x)× x0

‖x0‖2
cosϕ+

x0 × x

‖x0‖
sinϕ. (S51)

For a fixed kinematic parameter ω , β2,2, the opening angles αi,j , γi,j in Eq. (S50) should be solved according to
Eqs. (S1), (S2), (S17), (S18), and the following conserved relations:

αi,j = π − βi−1,j , γi,j = π − δi+1,j , βi,j = π − γi,j−1, δi,j = π − αi,j+1, mod(i+ j, 2) = 0. (S52)

Then, the displacement field of the tailored SQK tessellation can be written as

y = Ri,jx, x ∈ Pi,j . (S53)

Now we can write the conditions for a SQK tessellation to be compatible at cosω? ∈ (−1, 1):

h̃1p,q(φk,l, θk,l, φ
′
k,l, θ

′
k,l, ω

?) , K‖R2p,2qx2p,2q −R2p+1,2qx2p,2q‖2 = 0, p ≥ 1, q ≥ 2,

h̃2p,q(φk,l, θk,l, φ
′
k,l, θ

′
k,l, ω

?) , K‖R2p,2q+1x
′
2p,2q −R2p+1,2q+1x

′
2p,2q‖2 = 0, p ≥ 1, q ≥ 1.

(S54)

Eq. (S54) means that the disconnected panels are linked again at cosω?, as illustrated in Fig. S4(c). To determine the
SQK patterns compatible at cosω? ∈ (−1, 1), we start from an initial pattern with kbi,j = kdi,j = k̄i,j (i.e., compatible
at cosω? = 1), then optimize to achieve Eq. (S54). To obtain an optimized pattern close to the input one, we solve
the following optimization problem

min
φk,l, θk,l, φ′

k,l, θ
′
k,l

{
(kbi,j − k̄i,j)2,
(kdi,j − k̄i,j)2,

subject to

{
h̃mp,q(φk,l, θk,l, φ

′
k,l, θ

′
k,l, ω

?) = 0,

f̂mi,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l) = 0,

(S55)

for m = 1, 2. We add the constraints f̂mi,j = 0 [Eq. (S48)] to preserve that vertices of the same slit stay on the
same great circle during optimization. The boundary vertices are fixed according to Eq. (S49) in the optimization,
so that the corresponding spherical coordinates are not included in the optimization variables. We use the function
fgoalattain in Matlab R2020b to solve Eq. (S55).
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V. PLANAR TESSELLATIONS

If the side lengths of SQK tessellations tend to zero on the unit sphere, the compatibility condition is degenerated
to characterize the planar quadrilateral kirigami (PQK) tessellations. Specifically, by applying K → 0, we can obtain
the planar forms of Eqs. (S19) and (S33):

g̃′(cosα; a, b, c, d) = −d sinβ sin δ

b sinα sin γ
, (S56)

g̃′′ = k̃g

(
f2 − l2

sin θ1 sin θ2

)
t̃f1 + t̃f2 l

2

t̃f3 + t̃f4 l
2
, (S57)

where the coefficient k̃g is

k̃g =
d sinβ sin δ

b2c sin2 α sin2 γ
> 0. (S58)

The coefficient functions are given by

t̃f1 =− f2(sin2 θ1 − sin2 θ2)2,

t̃f2 =
[
2 sin2 θ1 − sin2(θ1 − θ2) + 2 sin2 θ2

]
sin2(θ1 − θ2),

t̃f3 =f2(sin θ1 − sin θ2)2,

t̃f4 =− sin2(θ1 − θ2).

(S59)

Now suppose that the quadrilateral is not a parallelogram (i.e., θ1 − θ2 6= π). Since l > f and t̃f2 > 0, we have

t̃f1 + t̃f2 l
2 > t̃f1 + t̃f2f

2 = 4f2 sin2 θ1 sin2(θ1 − θ2) sin2 θ2 > 0. (S60)

t̃f3 + t̃f4 l
2 =

abcd sinα sin γ

l2 − f2
> 0. (S61)

Consequently, we prove g̃′′ > 0 for a non-parallelogram quadrilateral void of PQK tessellations. Analogous to the
spherical case, this result leads to the strict convexity of the loop function, so that PQK tessellations with non-
parallelogram slits also have either one or two compatible configurations.

VI. ENERGETICS

A. Single-spring model

Here we present a single-spring model to simulate the energy landscapes upon the deployment of a 3 × 3 SQK
tessellation. in this model, the panels are rigid and connected by revolute joints, except that one specific joint is
replaced by a spring. As shown in Fig. S5(a), we disconnect the vertex above slit C1, and link the split vertices by
a zero-length spring with stiffness kS . At an incompatible state, the spring will keep shortest elongation to minimize
the elastic energy. Thus, the spring and the bottom edge of the flexible panel are always collinear, i.e., on the same
great circle. Then, the elongation of the spring is ∆S = |c1 − c̄1|, where ĉ1 is the top side length of the slit C1, and
c1 the bottom edge length of the flexible panel.

In the single-spring model, the elastic energy of a 3× 3 SQK tessellation is given by

ES = (kS/2)(c1 − ĉ1)2. (S62)

As shown in Fig. S5(b), the diagonal q1 of the slit C1 divides β1 into two angles βL1 and βR1 . Following spherical
trigonometry, we have

cos(q1
√
K) = cos(a1

√
K) cos(d1

√
K) + sin(a1

√
K) sin(d1

√
K) cos α̂1, (S63)
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FIG. S5. The single-spring model. (a) The cut-off vertices are linked by a zero-length spring. In this way, at any incompatible
state of the 3× 3 SQK tessellation, the spring always holds the shortest length to achieve minimum potential energy. (b) The
slit C1 extracted from the tessellation in (a). The diagonal q1 divides the opening angle β1 into βL

1 and βR
1 .

sinβL1 = sin α̂1
sin(d1

√
K)

sin(q1
√
K)

, (S64)

cosβL1 =
cos(d1

√
K)− cos(a1

√
K) cos(q1

√
K)

sin(a1
√
K) sin(q1

√
K)

, (S65)

cos(ĉ1
√
K) = cos(q1

√
K) cos(b1

√
K) + sin(q1

√
K) sin(b1

√
K) cosβR1 . (S66)

Since cosβR1 = cosβ1 cosβL1 + sinβ1 sinβL1 , we substitute Eqs. (S63)–(S65) into Eq. (S66), and obtain

ĉ1 =
1√
K

arccos


sin(b1

√
K) sin(d1

√
K)
[
sin α̂1 sinβ1 − cos α̂1 cosβ1 cos(a1

√
K)
]

+ sin(a1
√
K) sin(b1

√
K) cos(d1

√
K) cosβ1

+ cos(b1
√
K)
[
cos α̂1 sin(a1

√
K) sin(d1

√
K) + cos(a1

√
K) cos(d1

√
K)
]
 ,

α̂1 = arccos[g2 ◦ g3 ◦ g4(cosβ1)],

(S67)

where g2, g3, g4 are given by Eq. (S23). Eq. (S67) gives the explicit expression of ĉ1 with respect to cosβ1. Therefore,
the elastic energy ES is explicitly determined by the kinematic parameter cosβ1.

Now we derive the approximate formulas of the energy ES when K is small for 3 × 3 SQK tessellations with
equal opposite side lengths of slits, i.e., ci = ai and di = bi. To be clear, a small K satisfies L

√
K � 1 for

L = max{a1, b1, ..., a4, b4}. In this case, we calculate the Taylor series of ĉ1/b1 following Eq. (S67):

ĉ1
b1

=
c1
b1
− 1

2

4∑
i=1

(aibi)K sin2 β1 +O[L4K2]. (S68)

Thus, the scaled energy ES/(kSb
2
1) can be approximated by

ES
kSb21

=
1

8

[
4∑
i=1

(aibi)

]2
K2 sin4 β1 +O[L6K3]. (S69)

Additionally, we can calculate the Taylor series of the loop function ge(cosβ1) based on Eq. (S45):

ge(cosβ1) = cosβ1 −
1

2

4∑
i=1

(aibi)K sin2 β1 +O[L4K2]. (S70)
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FIG. S6. (a) The evolution of elastic energy E of 5× 5 SQK and PQK shells with equal opposite side lengths of slits in respect
of the kinematic parameter cosω. The square shells have the same side length s = π/3 but decreasing Gaussian curvatures
K = 1, 0.7, 0.4, and 0. The aspect ratios of the slits are fixed as 0.4. (b)–(d) The deployment path of the SQK shells. The
configurations for different cosω are determined by minimizing the elastic energy of the multispring model. (e) The deployment
path of the PQK shell.

Comparing Eqs. (S68) and (S70), we obtain

∆S

b1
=
|ĉ1 − c1|

b1
= |ge(cosβ1)− cosβ1|+O[L4K2]. (S71)

Finally, we obtain the scaled energy expressed by the loop function:

ES
kSb21

=
1

2
[ge(cosβ1)− cosβ1]2 +O[L6K3]. (S72)

B. Multispring model

For a general M × N SQK tessellation, we assume the hinge-connected panels are made of elastic materials. To
simulate the deformation of the panels, we use a multispring model, in which the vertices are linked by springs along
the edges and diagonals of panels. Then, the elastic energy of the deployed tessellations can be written as

E (Y) =
∑
n

kn
2

[
ln (Y)− l0n

]2
,

Y =
{
yi,j ,y

′
i,j |i = 0, 1, ...,M, j = 0, 1, ..., N

}
,

(S73)

where Y is the array consisting of all the vertex positions of panels, ln the spring length indexed by n, l0n the rest
spring length for the undeployed tessellation, and kn the spring stiffness. For simplicity, we set kn = 1/l0n in our
demonstration. We define the function

η(v1,v2,v3) =
v1 × v2

‖v1 × v2‖
· v3 × v2

‖v3 × v2‖
(S74)

so that the kinematic parameter cosω can be expressed as cosω , cosβ2,2 = η(y1,2,y2,2,y
′
3,2). We use the spherical

coordinates (longitude φ̃ and latitude θ̃) to represent the vertices

yi,j = (cos θ̃i,j cos φ̃i,j , cos θ̃i,j sin φ̃i,j , sin θ̃i,j)/
√
K, (S75)

y′i,j = (cos θ̃′i,j cos φ̃′i,j , cos θ̃′i,j sin φ̃′i,j , sin θ̃
′
i,j)/
√
K. (S76)
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FIG. S7. (a) The evolution of elastic energy E of 5× 5 SQK tessellations as a function of the kinematic parameter cosω. (b)
The SQK tessellations have the same side length s = π/3 and Gaussian curvature K = 1. They are designed to be compatible
at cosω = cosω? = 0, 1/

√
2, and 1, respectively.

To determine the vertex coordinates of deformed SQK tessellations, we start from the undeployed state at cosω = −1,
increase cosω incrementally, and minimize the elastic energy Eq. (S73) at each step by optimizing the positions of
the vertices yi,j and y′i,j on the sphere. We use the function fmincon in Matlab R2020b to solve the following
optimization problem

min
φ̃k,l,θ̃k,l,φ̃′

k,l,θ̃
′
k,l

E
(
yi,j ,y

′
i,j

)
subject to

{
[η(y1,2,y2,2,y

′
3,2)− cosω]2 = 0,

(φ̃1,1 − φ̄1,1)
2

= 0, (θ̃1,1 − θ̄1,1)
2

= 0, (φ̃1,2 − φ̄1,2)
2

= 0.
(S77)

In this optimization, we use (φ̄0,0, θ̄0,0, φ̄0,1) to express the orientation of the tessellation on the sphere.
In Fig. S6, we illustrate the energy evolution upon deployment of square SQK and PQK tessellations of the same

side length but different Gaussian curvatures K = 1, 0.7, 0.4, and 0. The configurations of these tessellations on the
deployment path are also provided. In Fig. S7, we illustrate the energy evolution upon deployment of square SQK
tessellations designed to be compatible at cosω = cosω? = 0, 1/

√
2, and 1, respectively. One can observe that each

energy curve has two zero points. Moreover, the energy barrier is lower if the two compatible states of a tessellation
are closer to each other.

VII. INVERSE DESIGN

In this section, we aim to optimize a square SQK tessellation on a unit sphere to achieve a domelike shape at a
certain deployed state. The design problem can be formulated by minimizing the distance between the target curve
and outer vertices at the deployed state over the domain of vertex locations on the sphere. For example, consider an
N ×N square SQK pattern (N = 6, ki,j ≈ k′i,j ≈ 0.5) with side length s. the corners of the square can be given by

xLB = (cos θ0 cosφ0, − cos θ0 sinφ0, − sin θ0),

xRB = (cos θ0 cosφ0, cos θ0 sinφ0, − sin θ0),

xRU = (cos θ0 cosφ0, cos θ0 sinφ0, sin θ0),

xLU = (cos θ0 cosφ0, − cos θ0 sinφ0, sin θ0),

(S78)

where θ0 = s/2 and φ0 = arcsin(tan(s/2)). The boundary vertices are determined by four series of parameters:

xBi = R(tBi s,x
LB × xRB)xLB ,

xUi = R(tUi s,x
LU × xRU )xLU ,

xLi = R(tLi s,x
LB × xLU )xLB ,

xRi = R(tRi s,x
RB × xRU )xRB ,

(S79)
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(a) (b)

FIG. S8. Shape morphing of a square SQK tessellation. (a) The square SQK tessellation with side length s = 0.3π and
Gaussian curvature K = 1 is deployed (ω? = 0.5π) to align with a small circle at x = 0.65. (b) The optimized SQK tessellation
approximates the circle.

(a) (b)

FIG. S9. Two mirror-symmetrical reconfigurable SQK shell structures optimized to approximate hemispheres can be connected
to form a full sphere. (a) Each kirigami pattern is perforated on a spherical square of side length s = 0.45π and Gaussian
curvature K = 1. (b) Each deployed configuration covers a hemispherical dome of height h = 1.0, and is connected to compose
a full sphere.

where i = 0, 1, ..., N , 0 = tI0 < tI1 < ... < tIN = 1, I = L,R,B,U . The outer vertices at the deployed compatible state
are denoted by rn = (xn, yn, zn), for n = 1, 2, ..., 4N , highlighted by green dots in Fig. S8(a). The equation of a circle
on the unit sphere can be given by g̃(r, λ) = x− λ for r = (x, y, z). We use the parameter λ ∈ (−1, 1) to control the
size and location of the target circle. To characterize the distance between the target circle and the outer vertices rn
for a fixed kinematic parameter ω = ω?, we define the following function:

g̃i,j(φk,l, θk,l, φ
′
k,l, θ

′
k,l, λ,R, ω

?) = [g̃(Rrm, λ)]2, (S80)

where φk,l, θk,l, φ
′
k,l, θ

′
k,l are spherical coordinates of the vertices xi,j and x′i,j on the undeployed tessellation, and

R = R(ϕ,x0) the rotation transformation controlling the orientation of the tessellation. We approximate a circle
with λ = λ0 by tackling the following optimization problem:

min
φk,l, θk,l, φ′

k,l, θ
′
k,l, t

I
k, λ, R

(λ− λ0)2 subject to


g̃i,j(φk,l, θk,l, φ

′
k,l, θ

′
k,l, λ,R, ω

?) = 0,

h̃mp,q(φk,l, θk,l, φ
′
k,l, θ

′
k,l, ω

?) = 0,

0 = tI0 < tI1 < ... < tIN = 1.

(S81)

The constraints f̂mi,j = 0 restrict that the vertices of the same slits locating on the same great circle [Eq. (S48)]. The

constraints h̃mp,q = 0 preserve the compatibility [Eq. (S54)]. We use the function fgoalattain in Matlab R2020b to
solve Eq. (S81). The optimized tessellation approximating a small circle is illustrated in Fig. S8(b).

For the demonstration in Fig. 4 in the Main Text, the input of the optimization is a 6× 6 square SQK tessellation
of side length s = 0.465π and Gaussian curvature K = 1. The initial tessellation is set to be compatible at ω? = 0.6π,
which is obtained from Eqs. (S47)–(S49) and (S55) with constant cut ratios kbi,j = kdi,j = 0.5 and uniformly distributed
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Spring

FIG. S10. The apparent rigidity of the two-configuration result will vanish if we introduce additional freedom to move in the
radial direction. Middle top: the single-spring model incorporates revolute joints and a spring to achieve the transition between
two compatible configurations. Middle bottom: spherical joints can be used to permit some panels to move out of the spherical
surface, such that zero-energy transition can be realized.

boundary vertices. The height of the target spherical dome is h = 1.2, such that the equation of the boundary circle
is g̃(r, λ0) = x− λ0 with λ0 = −0.2. As an additional demonstration, we optimize to obtain a square SQK shell with
side length s = 0.45π that approximates a hemispherical dome (λ0 = 0) at ω? = 0.7π. Then we can connect the
designed structure and its counterpart with mirror symmetry to achieve a full deployed sphere, as shown in Fig. S9.

VIII. THE ROLE OF OUT-OF-SURFACE MOTION

In the main text, we use the single-spring model and the multispring model to simulate the transition between two
compatible configurations of the SQK tessellations. Essentially, both of these two models introduce elastic energy
at the incompatible states to make the transition happen, during which the panels can only move on the spherical
surface. As an realization, the panels can be connected by revolute joints that only permit the rotation around the
radial direction of the spherical surface. Here we supplement a mechanism model that replaces some of the revolute
joints by spherical joints to realize zero-energy transition between two compatible configurations. The difference is
that the spherical joints allow the panels to have deformations out of the spherical surface. As shown in Fig. S10, the
three panels on the right of the kirigami tessellation can move out of the spherical surface by adding four spherical
joints, and the tessellation becomes a floppy mechanism with additional degrees of freedom of motion. In this case,
the incompatibility of SQK tessellations are characterized by the out-of-surface motion instead of rigidity. For SQK
tessellations composed of more panels, it is possible to replace carefully-chosen revolute joints by spherical joints to
systematically design such mechanisms of SQK tessellations with out-of-surface motion. We leave this as future work.

IX. FABRICATION OF PHYSICAL MODELS

The 5×5 SQK tessellation [shown in Figs. 1(c) and 1(d) in the Main Text] is fabricated by the 3D printer Stratasys
Objet350 Connex3 with the material TangoBlack. The panels are connected by the rubber-like materials at the joints.

The 6 × 6 SQK dome [shown in Figs. 4(c) and 4(d) in the Main Text] is fabricated by the 3D printer ZRapid
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iSLA1900D with the material 9400 Resin. The panels are connected by revolute joints.

X. MOVIE CAPTION

Movie 1 Configuration transition of the bistable spherical kirigami domelike structure.
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