International Journal of Mechanical Sciences 232 (2022) 107615

Contents lists available at ScienceDirect

ECHANICAL
SC IENCES

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

Check for

Deployment kinematics of axisymmetric Miura origami: Unit cells, | opnes’
tessellations, and stacked metamaterials

Xiangxin Dang?, Lu Lu?, Huiling Duan ®°, Jianxiang Wang *>*

a State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking
University, Beijing 100871, China
Y CAPT-HEDPS, and IFSA Collaborative Innovation Center of MoE, College of Engineering, Peking University, Beijing 100871, China

ARTICLE INFO ABSTRACT

Keywords: Origami is emerging as a promising paradigm for deployable structures. The theoretical analysis on the
Axisymmetric Miura origami relationship between geometry of the crease patterns and the induced deployment mechanisms is the key to
Deployment kinematics

the rational design of origami-inspired deployable structures. In this paper, we systematically investigate the
deployment kinematics of axisymmetric Miura origami from unit cells to single-layer tessellations and multi-
layer stacked metamaterials. We show that the axisymmetric Miura cells can be classified into two categories
according to the monotonicity of the angular motion, and the axisymmetric Miura origami tessellations can be
classified into seven categories based on the developability, flat-deployability, and the ability to form closed-
ring shapes. We also derive the conditions for the deployability of the multi-layer metamaterials constructed
by stacking axisymmetric Miura origami tessellations. Both the singly and doubly curved cases are studied for
the tessellations and metamaterials. Additionally, based on the kinematic formulations, we develop an easy-to-
implement optimization framework for the design of doubly curved axisymmetric Miura origami tessellations
that approximate surfaces of revolution. The optimized shape-morphing tessellations can also be used to
assemble multi-layer stacked metamaterials. Taken together, these results provide a comprehensive guidance
to design axisymmetric deployable structures based on origami principles.

Locking mechanism
Stacked metamaterials

1. Introduction

Axisymmetry, also known as rotational symmetry, is one of the
most common types of symmetry in geometry. Many natural objects
exhibit axisymmetric morphology such as sympetalous flowers [1]
and pendant drops [2]. Also, artificial axisymmetric shell structures,
benefiting from the favorable thermal performance and high strength-
to-weight ratio, are extensively applied in engineering to build domed
roofs [3], hyperbolic cooling towers [4], storage silos [5], etc. In
space engineering, deployable axisymmetric structures have gained
great importance for the design of telescopes and space antennas [6-8].
Deployability enables the large space devices to be packaged compactly
in spacecraft and spread after launched into the orbit. In addition
to astronautics, nowadays, deployable axisymmetric structures can be
found in diverse fields such as architecture [9], soft robotics [10],
materials science [11], and medical science [12].

Origami is an ancient art of folding paper, dating back to more
than one thousand years ago [13]. For recent decades, mathematical
rules have been developed to guide the design of origami [14-16],

promoting it beyond an art form to a scientific technique that can
shift two dimensional (2D) sheets to three dimensional (3D) struc-
tures [17]. Specifically, the rational understanding of the relations
between crease patterns and the induced foldability is critical to the
precise control of the folding path of origami-inspired structures [18-
36]. Meanwhile, origami technique is emerging as a new paradigm
of deployable typologies [8], and finds various applications includ-
ing deployable arrays [37,38], reconfigurable metamaterials [39,40],
origami robots [41-43], shape-morphing tessellations [44-49], and
micro-/nano-electromechanical systems [50]. Besides, origami-inspired
structures can possess distinctive mechanical responses such as neg-
ative Poisson’s ratio [51-53], graded stiffness [54,55], multistabil-
ity [56-59], and high energy absorption efficiency [60,61]. And more
importantly, the variation of crease patterns allows a tunable and
programmable design of these mechanical properties [62-69].
Classical origami patterns are generally composed of repeated
polygonal cells. Typical examples include the Miura-ori pattern [37],
Kresling pattern [70], square-twist pattern [71], Resch’s pattern [72],

* Corresponding author at: State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of

Engineering, Peking University, Beijing 100871, China.
E-mail address: jxwang@pku.edu.cn (J. Wang).

https://doi.org/10.1016/j.ijjmecsci.2022.107615

Received 26 April 2022; Received in revised form 2 August 2022; Accepted 4 August 2022

Available online 8 August 2022
0020-7403/© 2022 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/ijmecsci
http://www.elsevier.com/locate/ijmecsci
mailto:jxwang@pku.edu.cn
https://doi.org/10.1016/j.ijmecsci.2022.107615
https://doi.org/10.1016/j.ijmecsci.2022.107615
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2022.107615&domain=pdf

X. Dang et al.

and waterbomb pattern [73]. Among these, Miura-ori pattern is tessel-
lated by congruent parallelograms, which can be treated as a floppy
mechanism with a single degree of freedom. This feature of motion
greatly benefits applications in request of controlled folding or de-
ployment. As a result, Miura origami has been attracting considerable
attention in engineering and the scientific community since it was first
invented as a solution of the packaging and deployment for large spatial
membranes by the Japanese astrophysicist Koryo Miura in 1985 [37].
Subsequently, the celebrated Miura-ori was found to be embedded in
a much larger space of quadrilateral-mesh folding systems provided
with developability, rigid-foldability, as well as the single degree of
freedom [20]. The latter is now thoroughly characterized as the rigidly
and flat-foldable quadrilateral mesh origami (RFFQM) [33]. Various
modified Miura-ori patterns that are contained in the RFFQM have been
specially investigated, such as the cylindrical pattern [27,29,45,47], the
axisymmetric pattern [23,46,47], and the isomorphic/non-isomorphic
symmetric patterns [25,26]. In particular, the axisymmetric pattern
is constructed with tapered Miura-ori strips that are replicated in the
circumferential direction, and therefore can be deployed into annular
shapes with rotational symmetry. In this work, we refer to this cate-
gory of RFFQM as the axisymmetric Miura origami (AMO), which is a
promising candidate for deployable axisymmetric structures.

Current studies of AMO are mainly focused on the shape morphing
for surfaces of revolution. Gattas et al. [23] gave an original example
of AMO forming a conical shape in their work on the Miura-derivative
origami patterns. Song et al. [46] used AMO to design flat-deployable
and flat-foldable origami structures that can be deployed into closed-
ring shapes that approximate various surfaces of revolution with pos-
itive and negative Gaussian curvatures. Hu et al. [47] reported that a
shape-morphing AMO structure can get locked at two isolated annular
configurations if there are plenty of Miura-ori strips replicated in the
circumferential direction. Under this circumstance, the AMO structure
is flat-foldable at one annular configuration and flat-deployable at
the other, but cannot transform from one to the other through rigid
deployment. By contrast, if the number of replicated Miura-ori strips
is relatively small, the AMO structure will keep non-closed shapes on
the entire deployment path between the folded-flat and deployed-flat
configurations. Despite various examples of the shape-morphing AMO
structures given in [23,46,47], the relationship between the axisymmet-
ric crease patterns and the induced deployment mechanisms is not fully
explored. In this regard, some key questions are yet to be answered:
What geometric constraints of the crease distributions should be satis-
fied to build an AMO structure that can form a closed-ring shape upon
deployment? How can one judge a crease pattern to be flat-foldable
and flat-deployable, or corresponding to two isolated annular configu-
rations? How can one build deployable multi-layer metamaterials by
stacking various AMO tessellations? Answering these questions will
give a comprehensive understanding of the design space of AMO, and
therefore benefit the applications of AMO for axisymmetric deployable
structures.

In this paper, we investigate the deployment kinematics of axisym-
metric Miura origami at the levels of unit cells, single-layer tessella-
tions, and multi-layer stacked metamaterials. The origami panels are
assumed to be undeformable and have zero thickness, so that the
deployment is achieved by the relative rotation of adjacent panels
around the idealized hinges at the creases. Firstly, the deploying motion
of the AMO cells is formulated in terms of the geometric and kinematic
parameters. Secondly, the angular motion of the AMO tessellations is
theoretically analyzed for different numbers of unit cells replicated in
the circumferential direction. We will classify all the possible patterns
of AMO tessellations into seven categories based on the developability,
flat-deployability, and the ability to form closed-ring shapes. We also
find that the angular motion of an AMO tessellation is independent
of its radial geometry, the latter of which can be modified to change
the out-of-plane deformation of the folded tessellation. This decoupling
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effect inspires us to develop a simple and effective optimization frame-
work for the shape-morphing design of AMO tessellations with fixed
angular deployment behaviors. Finally, we construct the 3D metama-
terials composed of stacked AMO tessellations of planar or non-planar
folded shapes. The constraints on the geometry and deploying motion
between adjacent AMO tessellations are presented.

2. Unit cell kinematics

The unit cell of classical Miura origami has a degree-4 vertex and
four congruent parallelograms [37]. The AMO cell, instead, has a
degree-4 vertex at the joint of four trapezoids, as shown in Fig. 1(a).
The geometry of the flat AMO cell is determined by the side lengths a
(the circumferential edge length), b (the radial edge length), and sector
angles a (the major sector angle), p (the minor sector angle) with the
constraint

0<f<a<n/2 (€]

We define the deviation length d as the difference between the
lengths of the edges P,Q, and P,Q,, i.e.,

d = ||P0,|l = 1ROyl 2

We denote the difference between the major sector angle and the
minor sector angle by

b=a-p, 3
and call § the deviation angle. Using trigonometry, we have
2bsin$ = d sin . (©)]

The deviation angle 6 or deviation length d characterizes the discrep-
ancy of an AMO cell away from a Miura cell. Specifically, the trapezoids
with 6 = 0 or d = 0 become parallelograms, and the AMO cell
degenerates into the Miura cell under such circumstance. The folded
AMO cell is demonstrated in Fig. 1(b). Similar to the Miura cell, the
degree-4 vertex of the AMO cell has single degree-of-freedom motion
that can be determined by the dihedral angles y or ¢. The relationship
between y and ¢ is given by [33]
(14 cos? a)cos @ + sin® @

()

cosy = .
1+ cos2 a + sin® a cos @

Interestingly, the vertically projected pattern of the folded AMO
cell also consists of four trapezoids with axial symmetry, as shown in
Fig. 1(c). Thus, the geometry of the projected pattern can be described
by the projected major sector angle o', the projected minor sector angle ',
the projected circumferential edge length o', and the projected radial edge
length b'. The projected deviation length d’ and the projected deviation
angle &' can also be defined accordingly, which satisfy the following
relationships:

' _ ol Y
d' =Pl - 1P, Ol ©
8 =ad -p, )
2b' siné’ =d’sinpg’. ®

The projected major sector angle o’ is dependent on the dihedral angle
¢ following the spherical cosine rule [47]:
cos2a’ = cos? a + sin® a cos @. 9
Combining Egs. (5) and (9), we can further obtain the relationship
between o’ and y:
!

sin £ = B (10)

2 tan a

Eq. (10) indicates that the major projected angle o’ varies monoton-
ically with the dihedral angle y, so that «’ can be regarded as a
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Fig. 1. Axisymmetric Miura origami. (a) The deployed-flat configuration of an AMO cell. (b) A folded configuration of the AMO cell. (c) The vertical projection of the folded unit
cell. (d) The AMO tessellations are constructed by arranging AMO cells in the circumferential and radial directions. (e) An AMO tessellation composed of 25 x 5 unit cells. The
tessellation can be deployed with a single degree of freedom from a compact folded state (top left, 26’ = 0.005x) to a partially folded state (top right, 26’ = 0.04x), and eventually

form an closed-ring shape (bottom, 26’ = 0.08x).

parameter that traces the folding motion of the AMO cell. Altogether,
the kinematics of the AMO cell can be parameterized by «’ € [0, a] or
y € [0, z] with o’ = y = 0 representing the fully folded state, and o’ = a,
y = & representing the flat state.

The AMO cells can be arranged to construct an AMO tessellation,
as shown in Fig. 1(d). In the radial direction, the cells are directly
replicated. By contrast, in the circumferential direction, the circumfer-
ential edge lengths are iteratively enlarged to connect the adjacent unit
cells, while the radial edge lengths are kept unchanged. We can see
that the AMO tessellation is an axisymmetric structure, and the central
angle of an unit cell is equal to double the deviation angle 25. When
the tessellation is folded, the central angle turns to 25’, as shown in
Fig. 1(e). Therefore, the projected deviation angle ¢’ is a key variable
that reflects the angular motion of the AMO cells and tessellations.

Now we analyze the variation of §' upon deployment of the AMO
cells. As shown in Figs. 1(a)-(c), the projected lengths o', ¥’, and d’ can
be given by

d =a, b =bsing, d' =d, an
where 6 is the included angle between a radial edge and the vertical

line. Analogous to the Miura cell, the angle 6 is related to the deploying
parameter o’ as follows [51]:

sinf = ——. 12)

Combining Egs. (4), (8), (11), and (12), we discover an identity in the
motion of AMO cells:

tana _ tana’
tanf  tanp’’

13

This inspires us to define a geometric invariant of motion by
. _tana

= tanp’

which keeps unchanged for any projected cells on the path of deploy-
ment from the fully folded state to the deployed-flat state. We substitute
Egs. (7) and (14) into Eq. (13), and obtain the relationship between the
projected deviation angle 6’ and the deploying parameter ’:

14)

(typ — Dtan o

tan &’ (15)

typ +tan’a
If 1,5 = 1, the projected deviation angle &' is constantly zero. This
corresponds to a Miura cell, which always expands simultaneously in
two orthogonal in-plane directions upon deployment [51,52]. However,
for an AMO cell with #,; > 1, we will show that the rotational motion
in the circumferential direction is not always monotonic. To this end,
we use Eq. (15) to calculate the derivative of the projected deviation
angle ¢’ with respect to the deploying parameter o’:

ds' _ cos?8’ (tap — Dtep — tan® ')
do’  cos?a’ (1,5 +tan?a’)?

(16

Then we can solve dé’/da’ = 0 to obtain the deploying parameter
a = a*, under which the projected deviation angle 5’ reaches maximum
5*:

tana* = o™ a7
tans* = % ( tap = +> (18)
aff

We can see that the invariant #,; determines the extreme value of
the projected deviation angle 5* and the corresponding deploying
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parameter a*. Combining Egs. (17) and (18), we can further obtain
the following relationships:

*
at =2+ 57 19)
and
*
taﬂ=tan2<%+%>. (20)

In addition, substituting Eq. (10) into Eq. (15), we can determine the
relationship between the projected deviation angle §' and the other
deploying parameter y:

(tqp — Dtanasin(y /2)

tand’ = 21)

top +tan a sin®(y/2) ’

Also, substituting Egs. (14) and (17) into Eq. (10), we can obtain
the deploying parameter y* corresponding to the maximum projected
deviation angle 6*:

*
RSN — (22)

2 y/tanatan g

We know from Eq. (22) that the existence of a valid extreme point
y* € (0,7) requires tanatanf > 1, thatis, /2 < a + f < =z. This
condition is equivalent to a* < a, according to Eq. (10). Under this
circumstance, the projected deviation angle 6’ of an AMO cell will
first increase and then decrease upon deployment. Otherwise, it will
monotonically decrease to zero from the initial angle 6. According to
the values of a and B, we list these two cases below:

ioz/2<a+f<=xm
— The AMO cell has a non-monotonic angular motion.
- The projected deviation angle &' (y) increases on [0, y*], and decreases
on (y*, zl, where 8 =6'(y*) =6
ii. O<a+p<n/2
— The AMO cell has a monotonic angular motion.
— The projected deviation angle §'(y) increases on [0, z], where 5[’“)( =
&' (n) = 6.

Figs. 2(a) and (b) illustrate the variations of the projected deviation
angle &' with respect to the deploying parameter y for AMO cells
with different sector angles. In Fig. 2(a), the major sector angle a is
fixed as 0.375z. If the minor sector angle f = 0.125z, the projected
deviation angle §’ varies monotonically upon deployment, and reaches
a maximum § = 2.5z at the deployed-flat state with y = =. By contrast,
if p gets larger and satisfies « + § > /2, the projected deviation angle
5’ changes non-monotonically and reaches a maximum at a partially
folded state. In Fig. 2(b), the deviation angle 6 is fixed as 0.05z. If
a+p > n/2, the projected deviation angle ' varies non-monotonically.
Particularly, 8’ can reach over three times the deviation angle § for
a = 0.475 and g = 0.425. However, if a+§ < z/2, the projected deviation
angle &’ can only change monotonically in the range [0, 5].

In the non-monotonic case, we remark that there is no one-to-one
match between the projected deviation angle 6’ and the folded states
of an AMO cell, so that we cannot regard §’ as a deploying parameter.
Instead, we use o’ or y because these two angles vary monotonically
upon the deployment process. For the same reason, the angle 6 can
also parameterize the deployment of the unit cell, which will be used
in Section 4 to calculate the vertex positions on the folded AMO
tessellations.

3. Deployment mechanism of the AMO tessellations

An AMO cell can be deployed from a folded-flat state to a deployed-
flat state accompanied with the variation of the projected deviation
angle. However, the angular motion of an AMO tessellation is con-
strained by the condition that the central angle of the tessellation
cannot exceed 2r, because the panels are assumed to be undeformable
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Fig. 2. Variations of the projected deviation angle &' with respect to the deploying
parameter y for AMO cells with different sector angles. (a) The AMO cells have the
same major sector angle a but different minor sector angles . (b) The AMO cells have
the same deviation angle § = a — f = 0.057.

and cannot intersect with each other. If the number of AMO cells
replicated in the circumferential direction is large enough, the AMO
tessellation may form a closed-ring shape and get locked upon deploy-
ment before the cells reach the deployed-flat state. This phenomenon
of locking is the vital difference between the deployment behaviors of
AMO tessellations and the classical Miura tessellations. In this section,
we aim to analyze the locking mechanism of AMO tessellations, and
give the corresponding conditions for developability, flat-deployability,
and closability. To be clear, we give the following definitions:

* Developability: An AMO tessellation has a deployed-flat state with-
out overlap of panels.

+ Flat-deployability: An AMO tessellation can be rigidly deployed
from the folded-flat state to the deployed-flat state, without in-
tersection of panels.

* Closability: An AMO tessellation can be rigidly folded from the
deployed-flat state, or rigidly deployed from the folded-flat state,
to form a closed-ring shape.

We denote the circumferential number of the unit cells by N. Then
the developability condition can be written as

2N§ < 2, (23)
which is equivalent to

a—p<rz/N. (24)
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Fig. 3. AMO tessellations that have one or two closed states. (a) Variations of the central angle 2N§’ with respect to the deploying parameter y, where N = 20. The dashed part
of a variation curve represents the infeasible region with 2N¢§’' > 2z. (b)-(f) Configurations of the AMO tessellations corresponding to the representative points marked on (a).

The flat-deployability condition can be given by

2N§, <27 (25)
The closability condition reads
2N§' >2x. (26)

max

Obviously, a non-developable AMO tessellation (« — f > z/N)
always has a closed state and is non-flat-deployable. By contrast, a
developable AMO tessellation composed of unit cells with monotonic
angular motion (¢a—f < z/N and a+f < r/2) is always flat-deployable.
In particular, if « — § = #/N and a + § < z/2, the developable AMO
tessellation has a deployed-flat closed state. Otherwise, if a — f < 7/ N
and «a + # < x/2, the deployed-flat state is not closed. In this case, the
central angle decreases monotonically upon folding, and therefore the
developable AMO tessellation has no closed state.

For a developable AMO tessellation consisting of unit cells with
non-monotonic angular motion (¢« — f < z/N and a + f > x/2),
the deployed-flat state cannot always be achieved even though the
developability condition is satisfied. For example, if a — f = z/N and
a+ f > n/2, the AMO tessellation is developable and has a deployed-
flat closed state. But this flat configuration is not rigidly foldable
because the central angle cannot exceed 2z. Reversely, the folded-flat
AMO tessellation cannot be rigidly deployed to the deployed-flat state
as well. In other words, the AMO tessellation is non-flat-deployable.
Otherwise, if « — f < z/N and a + § > =x/2, to investigate the
corresponding flat-deployability, we need to examine the maximum
projected deviation angle of the unit cells from the AMO tessellation. To
this end, we substitute 2N §* = 2r into Eq. (20) and define a geometric
invariant of motion:
fy = tan? (% + %)
Firstly, if 7,5 < ty, we have 2N 6* < 2x, and therefore the AMO
tessellation is flat-deployable and has no closed state. Secondly, if 7,; >
tn, we have 2N6* > 2z, and the AMO tessellation has one or two closed
states. To identify the deploying parameter o’ under given &', we solve
Eq. (15) and obtain

, _ tana*

tana’ = (tan 6* F Vtan? 6* — tan? 5/> .
tan &’

For convenience, we introduce the subindexes “1,2” regarding the first
and second closed states, respectively. Then we substitute 2N¢§' = 2«

into Eq. (28) and determine the deploying parameters o' = @ , at the
closed states:
tan a*

@, = arctan [m <tan 6% F 4 /tan? §* — tan? %)] ,

27)

(28)

(29)

where a* and 6* are given by Egs. (17) and (18), respectively. Further-
more, we combine Egs. (10), (14), (17), (22), and (29), and then obtain
the corresponding deploying parameters y = 7, , at the closed states:

% /D
1, = 2arcsin SinG%/2) tan6* 4 [tan? 6% —tan? = )|,
’ tan(z/N) N

where 6* and y* are given by Eqs. (18) and (22), respectively. For
tap > ty, we have 2N&* > 2z and @ < @&, indicating that the
AMO tessellation is non-flat-deployable and has two closed states. For
tap = ty, we have 2N6* = 2z and @ = @,, which corresponds to a
single closed state. In this case, the AMO tessellation can be deployed
to form a closed-ring shape with an increase of the central angle from
0 to 2z, and then to the deployed-flat state with a decrease of the
central angle from 2z to 2N§. The tessellation does not get locked at
the closed state because the central angle will decrease immediately
after it reaches 2z. Thus, the AMO tessellation satisfying 7,; = ty is
developable, flat-deployable, and closable.

Altogether, we can classify the AMO tessellations into seven cate-
gories as below:

(30)

a. a-f<a/N,a+p>n/2 t,5<ty, 0<f<a<az/2
— The AMO tessellation is developable, flat-deployable, and unclosable.
— The central angle 2N¢&'(y) increases on [0,y*], and decreases on
(y*, ], where the maximum central angle is 2N &' (y*) = 2N 6* < 2.
b.a—f<z/N, a+f>x/2, tyy=ty, 0<f<a<z/2
— The AMO tessellation is developable, flat-deployable, and closable at
one folded state.
- The central angle 2N§'(y) increases on [0,y*], and decreases on
(y*, ], where the maximum central angle is 2N &' (y*) = 2N&* = 2.
c.a—-p<n/N, a+p>xn/2, Tap >IN O<pf<a<mz/2.
— The AMO tessellation is developable, non-flat-deployable, and closable
at two folded states.
— The central angle 2N¢§'(y) increases on [0,7,], and decreases on
[7,, z], where the maximum central angle is 2N &' (7, 5) = 2.
d. a-p<z/N,a+p<n/2, 0<f<a<z/2
- The AMO tessellation is developable, flat-deployable, and unclosable.
— The central angle 2N &' (y) increases on [0, x], where the maximum
central angle is 2N§'(x) = 2N 6§ < 2x.
e.a—-f=xn/N,a+p>n/2, 0<f<a<x/2
— The AMO tessellation is developable, non-flat-deployable, and closable
at one folded state and the deployed-flat state.
— The central angle 2N &' (y) increases on [0, 7,1, and is an isolated point
at y, = =, where the maximum central angle is 2N6(7, ;) = 2.
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f.a—p=a/N,a+f<n/2, 0<f<a<z/2

— The AMO tessellation is developable, flat-deployable, and closable at
the deployed-flat state.

— The central angle 2N §'(y) increases on [0, z], where the maximum
central angle is 2N §'(x) =2N§ = 2x.

g a—p>n/N,0<f<a<mz/2.

- The AMO tessellation is non-developable, non-flat-deployable, and
closable at one folded state.

— The central angle 2N §'(y) increases on [0, 7,1, where the maximum
central angle is 2N &' (7,) = 2x.

Among the seven categories above, the AMO tessellations have two
closed states in categories ¢ and e, one closed state in categories b, f,
and g, and no closed state in categories a and d. Remind that we have
solved Eq. (15) under the condition 2N’ = 2z to obtain Eq. (30), which
gives the expressions of deploying parameters y = 7;, at the closed
states of AMO tessellations in categories b and c. The derivation can be
directly generalized to all the closable AMO tessellations in categories
b, ¢, e, f, and g. Following the same procedure, we can obtain the
expression of deploying parameter y = 7, at the first closed state of
these tessellations:

% )2
7, = 2arcsin sinG”/2) tan6* — 4 [tan? 5* — tan? = )|, (€20)]
tan(z/N) N

where §* and y* are given by Egs. (18) and (22), respectively. In other
words, for any closable AMO tessellation, there always exists the first
closed state with y = 7,. The difference lies in the second closed state
corresponding to y = 7,: in category b, we have 7, = 7,; in categories
c and e, we have 7, > 7,; in categories f and g, 7, does not exist. In
Fig. 3(a), we illustrate the variations of the central angle 2N¢§’' with
respect to the deploying parameter y for typical examples from the
five categories of AMO tessellations that have one or two closed states.
These AMO tessellations have the same number of circumferential
cells N = 20, but different major sector angles a« and minor sector
angles B. The configurations of these AMO tessellations are shown in
Figs. 3(b)—(f), corresponding to categories b, ¢, e, f, and g, respectively.

Despite adjusting the major and minor sector angles, we can also
change the number of unit cells to obtain AMO tessellations with
various deployment behaviors. Fig. 4(a) illustrates the variations of
the central angle 2N¢§’ with respect to the deploying parameter y for
AMO tessellations composed of different numbers of circumferentially
replicated unit cells. The unit cells have the same sector angles a =
0.375z and p = 0.3257, corresponding to a non-monotonic angular
motion (category i). When N = 14, the central angle 2N¢§’ is always
less than 2z, and the AMO tessellation has no closed state (category
a). As N increases to 17, the central angle 2N§’ can reach 2z, and the
AMO tessellation has two folded closed states (category c). If N = 20,
we have 2N§ = 2N(a — f) = 2z, and therefore the second closed
state becomes isolated and flat (category e). The circumferential cell
number N is further increased to 23 such that 2N6 = 2N (a — §) > 2x.
In this case, the AMO tessellation is non-flat-deployable and has one
folded closed state (category g). Additionally, in Fig. 4(b), we show
the variations of the central angle when the unit cells have a monotonic
angular motion with « = 0.257 and g = 0.2z. When N = 14 and 17, the
AMO tessellations have no closed state (category d). As N increases to
20, we have 2N = 2N (a — p) = 2z, corresponding to a flat-deployable
AMO tessellation with a deployed-flat closed state (category f). Finally,
if N = 23, the AMO tessellation has one folded closed state (category

8).
4. Doubly curved AMO tessellations

So far, we have formulated the angular motion of AMO tessel-
lations. The radial edge lengths are kept unchanged when the unit
cells are tessellated along the radial direction. Therefore, the upper
(or lower) vertices of the tessellations remain in a planar surface
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Fig. 4. Variations of the central angle 2N¢§' with respect to the deploying parameter
y for AMO tessellations composed of different numbers of circumferentially replicated
unit cells. The dashed part of a variation curve represents the infeasible region with
2N§' > 2x. (a) The unit cell has a non-monotonic angular motion with a = 0.3757
and f = 0.325z. (b) The unit cell has a monotonic angular motion with « = 0.25z and
p=02x.

upon folding, while curved shapes are formed in the circumferential
direction. We call this type of AMO tessellations the singly curved AMO
tessellations. If we modify the radial edge lengths, the upper (or lower)
vertices of a folded AMO tessellation will not stay planar, but otherwise,
constitute a discrete curved surface. The modified AMO tessellations
can be named the doubly curved AMO tessellations. In addition, the
radial edge lengths can be optimized to design AMO tessellations that
approximate a target surface of revolution at the folded closed state.
Explorations on this shape-morphing problem can be found in [46,47].
The examples provided in [46] are developable and flat-deployable
(category b). By contrast, the examples in [47] are developable and
non-flat-deployable (category c). However, the sector angles a and p
are outputs of the inverse design algorithms in [46,47]; therefore the
deployment kinematics of the AMO tessellations cannot be precisely
designed on demand. To overcome this issue, we develop an easy-to-
implement optimization framework for the shape morphing of closed
AMO tessellations. The deployment kinematics can be fixed in advance,
and the radial edge lengths are optimized to minimize the distance
between a target surface and the upper (or lower) vertices of an AMO
tessellation.

4.1. Kinematics

To begin with, we formulate the vertex positions of doubly curved
AMO tessellations upon deployment. An AMO strip with five unit cells
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Table 1
Geometric parameters for doubly curved AMO tessellations.
Row M N « I 5 a a h by. bye... by y
09,1.1,0.8,1.2,0.7
. . . X . . oo T .13
1 5 40 03757 0.357 0.0257 0.157 0.6 1.42 13.06.14.05.15 0.13547
0.939,1.252,0.856, 1.310,0.773,
2 5 40 03757 0.35637 0.018687 0.26257 0.231 0.16 1362.0.691. 1.406,0.611,0.144 0.29587
1.277,1.559,1.205,1.615,1.132,
3 5 40 0.3757 0.357 0.0257 0.157 0.41 0.16 1667 1.058, 1.715.0.985. 1.758 0.13547
(a) by by by by bs bs b7 bg by big in the xz plane. We further denote the height of the innermost vertex

Fig. 5. Doubly curved AMO tessellation. (a) An AMO strip composed of five unit
cells with different radial edge lengths. (b) The folded AMO strip can be placed in a
coordinate system where the zx-plane serves as a plane of symmetry. In addition, the
strip can be circumferentially replicated to construct a doubly curved AMO tessellation
with the upper vertices forming a discrete surface of revolution (bottom left).

of different radial edge lengths is illustrated in Fig. 5(a). The strip
can be characterized by the major sector angle a, the minor sector
angle g, the circumferential edge length a, and the array of radial
edge lengths (b, b,, ...,b;o). The deviation angle § is half the central
angle of the tapered strip. We also illustrate a folded state of this AMO
tessellation and the corresponding projected pattern in Fig. 5(b). The
included angle between a radial edge and the z-axis is denoted by
0. The projected pattern on the xy-plane is also a tapered strip. The
projected major and minor sector angles are denoted by « and f,
respectively. The projected deviation angle & is half the central angle
of the projected tapered strip. The upper vertices P,, P,, ..., Ps of the
folded strip can be linked to form a curved line in the xz-plane. Since
the angular motion of the unit cells only depends on the sector angles
a and B, the kinematic formulations of the projected angles o’ and &’
are the same as the singly curved case, despite that the radial edge
lengths are not identical with each other. As a result, the criteria for
developability, flat-deployability, closability, as well as the categories
a-g for singly curved tessellations, can be applied to doubly curved
tessellations straightforwardly.

In general, for an AMO strip with M unit cells in the radial direc-
tion, we denote the radial edge lengths by b = (b, b,, ..., byy,), and the
upper-side vertices by Py, Py, ..., Py;. As shown in Fig. 5(b), a Cartesian
coordinate system O — xyz is built such that the x-axis is the axis of
symmetry of the projected strip, and the z-axis is the axis of rotational
symmetry of the folded AMO tessellation. As a result, the vertices P, are

P, by h. Thus, the coordinates of P, are given by

sin f’
X0=am, y0=0, and Zo=h. (32)
Then, the positions of other vertices P, on the upper side can be
calculated iteratively by

X = X1 + (byy + byy_1)sin 0,
=0, (33)
zZp = 21 + (by — byp_1)cos b,

for k = 1,2,..., M, where the angle 6 is dependent on the deploying
parameter o’ and major sector angle « as given in Eq. (12). To be clear,
the angle 6 is always the same for every unit cell in the tessellation,
because the angles o’ and « are identical from cell to cell. From
Egs. (32) and (33), we can see that the vertex positions (x;, y.z;)
can be modified by altering the length parameters a, h, and b under
fixed projected angles o/, ', and &', for k = 0,1, ..., M. Therefore, we
can design the closed shape of an AMO tessellation with fixed angular
deployment kinematics.

4.2. Approximating surfaces of revolution

In light of the rotational symmetry, the shape design of an M x N
AMO tessellation can be simplified to the design of a strip extracted
from the tessellation, i.e., to minimize the distance between the gener-
atrix of the target surface and the upper (or lower) vertices on the strip.
We denote the target generatrix by z = f(x), x € [r, R] and the upper
vertices by P,. To initialize the inverse design of AMO tessellations,
we choose the geometric parameters M, N, «, and f from one of the
categories b, c, e, f, and g. Considering that the deploying parameters
o' and y have a one-to-one correspondence given by Eq. (10), we can
use Eq. (31) to derive the expression of the deploying parameter o’ = @,
at the first closed state:

*
@, = arctan _tana” (4 ons* — . Jtan? 6% —tan? Z )| . (34)
tan(z/N) N

The aim is to determine the vertices P, such that they locate on the
generatrix z = f(x) and cover the range from x, = r to x,, = R. To
this end, firstly, we fix the location of the innermost vertex P, as the
left endpoint (r, 0, f(r)) of the generatrix. Since the projected angles are
6’ =x/N and p' = a;—x/N for the closed configuration, the parameters
a and h can be solved from Eq. (32):
sin(z/N)

a=rm, h=f(r) (35)
The other vertices P, on the upper side of the strip can be calculated
by Eq. (33) in terms of the radial edge lengths b = (b, b,, ..., by,,) and
the deploying parameter

0 = arcsin <ﬂ> . (36)
cos @;

Secondly, we determine the radial edge lengths b by solving the fol-

lowing optimization problem:

|f(xp)—z,| =0

, 37
|xp —R| =0 @7)

min Var(b) subject to {
b
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Fig. 6. Doubly curved AMO tessellations (N = 40) that are optimized to approximate a
parabolic surface. (a) and (c) The variations of the central angle 2N 4’ and the deploying
parameter o’ with respect to the deploying parameter y for the prescribed angular
motion. (b) and (d) The closed ring-like configurations and the origami patterns of
the deployed-flat strips that are optimized based on the angular motion in (a) and (c),
respectively. The AMO tessellation in (b) is flat-deployable, and the AMO tessellation in
(d) is non-flat-deployable. The dashed part of a variation curve represents the infeasible
region with 2N§’' > 27 or o« > @,.

where Var(b) is the variance of b, defined as

oM
1

== Y. (38)
M i=1 I

oM

< 1 2
Var(b) = gf (=) u
In this optimization, we utilize the objective function Var(b) to achieve
a relatively uniform distribution of radial edge lengths.

Fig. 6 illustrates two examples of 5 x 40 AMO tessellations that
approximate a parabolic surface with the generatrix y = 0.04x?, x €
[2,8]. In the first example, the sector angles a, § are assigned to generate
a flat-deployable AMO tessellation (category b), as shown in Figs. 6(a)
and (b). In the second example, the AMO tessellation is specified to
be non-flat-deployable (category e), as shown in Fig. 6(c) and (d). We
solve Eq. (37) to obtain the corresponding radial edge lengths. It can be
observed that the designed AMO strips are different in sizes and shapes,
but the assembled tessellations can form the same target shape at the
folded closed configurations. The geometric and deploying parameters
of these two AMO tessellations are listed in the second and third rows of
Table 1. Note that in this section we have used o’ = @, to represent the
closed states of AMO tessellations. This is equivalent to y = 7, because
o' and y have a one-to-one correspondence with each other. Each of
the conditions o/ = @, and y = ¥, indicates that the AMO tessellations
form a closed configuration with 2N¢§’' = 2z. As a result, the infeasible
region of deployment (e.g., the dashed part in 6(c)) can be described
by either 2N6'(y) > 2z or a'(y) > a;.

5. Multi-layer stacked metamaterials

Classical Miura origami tessellations can be stacked to build deploy-
able 3D metamaterials [51,64,65]. As a generalization, a deployable
two-layer configuration of doubly curved AMO tessellations was pre-
sented in [46]. However, the conditions for the deployability of stacked
AMO tessellations have not been fully explored. In this section, we aim
to systematically show how to design deployable stacked metamaterials
with singly and doubly curved AMO tessellations. We will also reveal
the discrepancy of stacked deployability between singly and doubly
curved AMO tessellations.

5.1. Singly curved case
We start by investigating the combination of two singly curved AMO

cells. Analogous to other stacked origami metamaterials with degree-
4 vertices [64,65], the two layers of AMO cells can be stacked into
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nested-in or bulged-out configurations. We demonstrate the AMO cells
corresponding to these two stacking modes in Fig. 7(a). If the stacked
unit cells can be deployed simultaneously, the motion of connected
edges should keep coincident on the path of deployment. Therefore, the
unit cells share the same projected patterns, as illustrated in Figs. 7(c)
and (d). Furthermore, we can see that a nested-in counterpart of a
given AMO cell A can be transferred to a bulged-out one by simply
reversing the orientation of placement. As a result, basically, we can
formulate the deployment kinematics of the nested-in and bulged-out
configurations of singly curved AMO cells using the same equations.
We use the notations in Figs. 1(a)-(c) to denote the geometric and
deploying parameters of the two layers of AMO cells, and distinguish
them by the superscripts A and B, as shown in Figs. 7(c) and (d). Since
the stacked cells in layers A and B have the same projected pattern,
they have the same projected angles «’, f’, 5’ and edge lengths o', b'.
Then we can examine the deployment kinematics of the stacked cells
from Egs. (11)-(13), and obtain the following constraints for stacking:

! A B
tana _ tan o _ tana i (39)
tanf’  tanpA  tanpB
d =ada" =db, (40)
b cosa’ = b cosa® = bBcosa®. (41)

Egs. (39)-(41) give the geometric conditions for the deployability of
stacked singly curved AMO cells in layers A and B. In addition, we
can use Eq. (10) to obtain the relationship between the deploying
parameters for these two cells:

A B
tana’ = sin % tan ™ = sin % tana®. (42)

We note that Eqs. (39)-(42) can also apply to stacked Miura cells [51].
In particular, Eq. (39) becomes an identity o’ = ' because we have
a® = pA and of = B for Miura cells.

In analogy with the single-layer AMO tessellations, the stacked
tessellations can be built by arranging the stacked cells in layers A and
B in the radial and circumferential directions. Then we can alternate
the tessellations in layers A and B along the altitude direction to
construct the multi-layer stacked metamaterials, as shown in Figs. 8(a)
and (b). Note that we can also construct metamaterials stacked by
singly curved AMO tessellations varying from layer to layer, as long as
the adjacent layers of the AMO tessellations satisfy the constraints given
by Egs. (39)-(41). For brevity, we only discuss the basic configurations
of alternate layers.

The deployment kinematics of a separate tessellation extracted from
the stacked metamaterials follow the classifications in categories a—
g. However, the synchronous motion of the stacked metamaterials
is constrained by the condition that the AMO tessellations of each
layer share the same projected pattern on the deployment path. In
other words, the deployment of the stacked metamaterials can only
happen at the overlapping range of the deploying parameters o’ for
the AMO tessellations in each layer. For example, consider the nested-
in stacked metamaterial in Fig. 8(a). The AMO tessellations in layers
A and B have the geometric parameters a® = 0.36237z, p* = 0.3423x,
a® = 02757z, p® = 025z, and N = 40. Therefore, the deployment
kinematics of the tessellations in layers A and B drop in categories b
and f, respectively, that is, both the tessellations are developable and
flat-deployable, but the tessellation A has a folded closed state while
the tessellation B has a deployed-flat closed state. The variations of the
deploying parameter y with respect to the deploying parameter «’ for
the AMO cells in layers A and B are plotted in Fig. 8(c). Recall that, for
the flat-deployable AMO tessellation in layer A (or B), y varies from
0 to = with ' increasing from 0 to a® (or a®) on the entire path of
deployment from the folded-flat state to the deployed-flat state. One
can observe from Fig. 8(c) that when the tessellation B is deployed-
flat at o’ = aB, the tessellation A is still partially folded. However,
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Fig. 7. Stacked AMO cells. (a) The nested-in and bulged-out stacked configurations of singly curved cells. (b) The nested-in and bulged-out stacked configurations of doubly curved
cells. (¢) and (d) The singly curved cells in a stacked configuration have the same projected pattern. (e) and (f) The doubly curved cells in a stacked configuration have projected

patterns with the same outlines but different radial edge lengths.
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Fig. 8. Singly curved stacked AMO metamaterials that have a locking mechanism at the closed ring-like state. (a) Deployment of the nested-in configuration. (b) Deployment of
the bulged-out configuration. (c¢) The variations of the deploying parameter y with respect to the deploying parameter a’ for the tessellations in layers A and B. (d) The variations
of the central angle 2N’ with respect to the deploying parameter o’ for the tessellations in layers A and B. The dashed lines in (c) and (d) represent the infeasible region for the

tessellations in layers A.

the stacked metamaterial cannot be further deployed from o« = aof
to a’ = a” because the deploying parameter «’ cannot exceed the
range of tessellation B. As a result, the stacked metamaterials are non-
flat-deployable. In addition, the variations of the central angle 2N ¢’
with respect to the deploying parameter o’ are plotted in Fig. 8(d).
The central angle starts to increase at 0 and finally stops at 2z, which
indicates that the stacked metamaterial gets locked at the folded closed
state despite that a single tessellation in layer A can be further deployed

with a decrease of the central angle. This phenomenon can also be seen
in the bulged-out stacked metamaterial as shown in Fig. 8(b).

Generally, we can construct axisymmetric origami metamaterials
with a locking mechanism by stacking two successive layers of de-
velopable AMO tessellations that do not exhibit locking behaviors.
The developability provides convenience for the manufacture of these
tessellations. In such metamaterials, the folded closed state of a tessella-
tion in layer A (category b) should match the deployed-flat closed state
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Fig. 9. A deployable metamaterial with a locking mechanism at the closed ring-like state. The metamaterial is in a bulged-out stacked configuration and composed of eleven
layers of 10 x 40 doubly curved AMO tessellations. (a) Geometric notations of the tapered strips extracted from the tessellations in each layer of the metamaterial. The major and
minor sector angles are a = 0.375z and f = 0.35z, respectively. (b) Deployment process of the stacked metamaterial.

of the tessellation in layer B (category f), which can be formulated as

*A_ BT, T
R Y
where o** is the extreme point of the deploying parameter o’ for
the AMO tessellation in layer A, as defined in Eq. (17). Combining

Egs. (17), (39), and (43), we obtain

(43)

tan a®

(T T
=tan’ (2 4+ X)), 44
anph 0 (4+2N) 44
and
B_Z%_ % B_T_ T
CE=3taNy P TiaN (45)

Egs. (44) and (45), together with Egs. (39)-(41), give the constraints
for stacking the developable and flat-deployable AMO tessellations to
build axisymmetric origami metamaterials with a locking mechanism.

5.2. Doubly curved case

Now we switch to the stacked cells of doubly curved AMO tessella-
tions, which also include nested-in and bulged-out configurations, as
shown in Fig. 7(b). In analogy with the singly curved case, the cir-
cumferential edges on the boundaries in adjacent layers should connect
with each other correspondingly to compose a stacked configuration.
Therefore, the stacked constraints should include Egs. (39) and (40).
However, a doubly curved AMO cell has different radial edge lengths,
which means that we cannot obtain a bulged-out stacked configuration
by simply reversing the placement of a nested-in cell. As a result,
the stacked constraints for the radial edge lengths of doubly curved
AMO cells should be formulated separately for nested-in and bulged-out
configurations.

We use the notations in Fig. 7(e) to denote the geometric parameters
of the nested-in stacked cells and their projected patterns. For a stacked
configuration, the vertices PA and Q* should coincide with PBi" and
QB respectively, which can be written as
PAQR = pBingBin, (46)
Furthermore, using the kinematic formulations given by Egs. (12) and
(33), we can obtain the component expressions of Eq. (46) in the
horizontal and vertical directions:

< A B.in
A A\COSQ™ _ B.in B,iny COS ™"
by +53) cod (b, + b, cosa 47)
A A _cos?a® _ Bin_ Bin _ cos? gBin
B =BT = 500 = B = 5 1= S (48)
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Since we have bf # b2A and b]f’i“ + bf’i“ for doubly curved cells, Eq. (48)
holds for varying o’ if and only if @ = «B". In this case, we obtain

A _ B A _ pBi
bt =b"" and by =b" (49)

by solving Egs. (47) and (48), which means that a nested-in stacked
configuration of doubly curved AMO cells is deployable if and only
if the two cells are identical with each other. However, the nested-in
stacking of two identical cells is invalid because a complete overlap of
two cells will occur on the entire deployment path of such stacking
configurations. As a result, we conclude that any nested-in stacked
configuration of doubly curved AMO cells is non-deployable.

For the bulged-out stacked configurations, we use the notations in
Fig. 7(f) to describe the geometry. The stacking constraint given by
Eq. (40) can be rewritten as

aA — aB,out’ (50)
and the stacking constraint for radial edges is given by
PAQA — PB,oulQB,oul. (51)

Similar to Egs. (47) and (48), we write the component expressions of
Eq. (51):

sah < yBsout
(B + b SBE _ (pBout y pBouy COST (52)
cos a CcoSs o'
A A 1 / cos? ah _ /1Bout B,out cos? gB-out
(bl - b2 ) = COSZ o h (b2 - bl )m (53)

Again, we have b # b} and b?"’“t + b';")m for doubly curved cells,
and a® = oB° for a deployable stacked configuration. Then we solve
Egs. (52) and (53) to determine the relationships for the radial edge
lengths:

by = b2 and by =P (54

1 1

Eq. (54) indicates that a bulged-out stacked configuration of doubly
curved AMO cells are deployable if and only if the radial edge lengths
in layer A are equal to those in layer B but have a reverse order. In
addition, substituting a® = a®°" into Eq. (39), we obtain

(XA — aB,oul and ﬂA — ﬂB.oul. (55)

Altogether, Egs. (50), (54), and (55) give the geometric constraints for
the deployability of bulged-out stacked configurations of doubly curved
AMO cells.
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Fig. 10. The deployment process of a flat-deployable metamaterial. The metamaterial is in a bulged-out stacked configuration and composed of eleven layers of 10 x 40 doubly
curved AMO tessellations. The major and minor sector angles are a = 0.375z and f = 0.3563r, respectively.

From the discussions above, we know that the deployable multi-
layer metamaterials composed of doubly curved AMO tessellations can
only have bulged-out configurations. We use the notations in Fig. 9(a)
to describe the geometry of the bulged-out stacked tessellations. The
layers of tessellations are indexed from bottom to top by Al, Bl, A2,
B2, A3, etc. According to Eq. (55), the sector angles of the tessellations
in each layer should be the same, denoted by « and . In general, we
denote the unit cell numbers in the radial and circumferential directions
by M and N, respectively. Then we can apply Eq. (54) to the radial
edges in adjacent layers, and obtain the following relationships:

B =b L =13, 2M — 1,

BB =p j=2,4,....2M o0)
G =bl Jj=2.4,....2M,

b =bPY =24, 0M -2,

J
—BG=D (57

b =b XV, =35 2M ~ 1,

for i > 1. In particular, from Egs. (56) and (57), we can derive the
following relationships:

DY = by, and b5, =0T, (58)
fori=2,3,..., M. Eq. (58) inspires us to specially consider the stacked
sequence Al, Bl, A2, B2, -, AM, BM, A(M + 1), that is, there are
2M + 1 layers of AMO tessellations and M unit cells in the radial
direction in each layer. In this case, if we assign values to the radial
edge lengths in the layers Al and A(M + 1) (i.e, b} and b;.\(MH)
for j = 1,2,...,2M), then the lengths of radial edges in other layers
can be uniquely determined layer by layer from Egs. (56)-(58) for
i = 2,3,..., M. Additionally, we can use the sine rules to obtain the

relationships of the circumferential edges:

aB,t — Ai

a™, 1<i<M,

M = BUD 4 (B _bA,i)Sin(fx—_ﬁ)’ d<i<M+l (59)
1 1 sin

Fig. 9(b) illustrates the deployment of an 11-layer stacked metama-
terial, in which the geometry of the AMO tessellation in the bottom
layer (i.e., layer A1) is given by the geometric parameters in the third
row of Table 1, and the radial edge lengths of the AMO tessellation in
the top layer (i.e., layer A6) are assigned to be the same as those in
layer Al. The angular motion of the tessellations belongs to category
e, determined by the sector angles « = 0.375z, § = 0.35z, and the
circumferential cell number N = 40. Therefore, the deployable stacked
metamaterial is non-flat-deployable, and has a locking mechanism
at the closed state. We can also choose specially-designed geometric
parameters to build deployable metamaterials with desired shapes and
angular deployment behaviors. For example, we fix the AMO tessella-
tion in the top layer (i.e., layer A6) as in the second row of Table 1, and
prescribe the radial edges of the AMO tessellation in the bottom layer
(i.e., layer Al) to have a constant length, i.e., the tessellation in the
bottom layer is set to be singly curved. Then we obtain a flat-deployable
metamaterial with a flat bottom surface and a parabolic top surface, as
shown in Fig. 10.

Finally, we note that there is no multi-layer metamaterial with
alternative layers (ABABA---) of doubly curved AMO tessellations. A

11

brief proof can be given by supposing we have such alternative layers,
ie., a® = gfi=D GBI = gBU-D pAIl — b?(';l), b?i = 52D Then we
can obtain b;.*" = b’.‘il and b}g’ = b;'il from Egs. (56)-(59), which leads
to a contradictory result that the AMO tessellations are singly curved.
The lack of alternatively stacked configurations reflect the discrepancy
between doubly and singly curved AMO tessellations.

6. Conclusions

To conclude, we provide a systematic study on the deployment
kinematics of axisymmetric Miura origami (AMO) at three hierarchical
levels from unit cells to tessellations and stacked metamaterials. Firstly,
we show that the AMO cells can exhibit monotonic and non-monotonic
angular motion for different values of sector angles. Secondly, we
demonstrate that diverse deploying behaviors will emerge if the AMO
cells are tessellated to compose AMO tessellations. Depending on the
circumferential cell number and the unit cell geometry, AMO tessel-
lations can exhibit different deployment kinematics, characterized by
the developability, flat-deployability, and closability. Thirdly, we gen-
eralize the kinematic formulations from singly curved to doubly curved
AMO tessellations, the latter of which have non-uniform distributions
of radial edge lengths, and therefore can form curved shapes in both
circumferential and radial directions. Benefiting from the analytical
formulations of the deployment kinematics, we develop an easy-to-
implement optimization framework for the design of doubly curved
AMO tessellations that approximate surfaces of revolution. Finally, we
show that the deployability of stacked AMO metamaterials requires
additional conditions for matching the angular motion of origami tes-
sellations in adjacent layers. The stacking constraints for the singly
curved and doubly curved tessellations are presented separately. The
present study assumes that the thickness of the trapezoidal panels is
zero, which lays the foundation for future work that incorporates a
finite panel thickness for engineering applications.
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