
Xiangxin Dang 
Department of Civil and Environmental 

Engineering,  

Princeton University,  

Princeton, NJ 08544  

e-mail: xd7191@princeton.edu

Glaucio H. Paulino1 

Fellow ASME  

Department of Civil and Environmental 

Engineering,  

Princeton Materials Institute (PMI),  

Princeton University,  

Princeton, NJ 08544  

e-mail: gpaulino@princeton.edu

Kirigami Engineering: 
The Interplay Between Geometry 
and Mechanics
Kirigami, as a scientific concept that emerges with but distinguishes from origami, provides 
a paradigm for engineering the mechanical properties of a surface through geometric 
analysis. The cutting geometry pattern that enables panel rotations around shared nodes— 
by itself or in conjunction with folding geometry that allows panel rotations around shared 
edges—yields predictable mechanical responses ranging from two-dimensional (2D) to 
three-dimensional (3D) deformations and from shape-fitting to metamaterial functionalities. 
This contribution reviews the deterministic relationships between geometry of a kirigami 
surface and its mechanical responses under given external loading. We highlight rigid and 
nonrigid 2D deformations determined by the convexity, compatibility, or symmetry of the 
cutting patterns (e.g., tessellations characterized by wallpaper groups); 3D deformations 
controlled by cutting distance versus surface thickness, slit shapes, or the combined effect of 
cuts and folds; and mechanical metamaterial functionalities arising from unique lattice 
connections and panel orientations, including topological polarization transformation, 
static nonreciprocity, and Poisson’s ratio functional variation. We address various 
methodologies for linking geometry and mechanics in kirigami surfaces, including 
theoretical analyses, surrogate modeling, finite element simulations, and experimental 
evaluations. We also discuss strategies for fabricating kirigami surfaces, such as 3D 
printing, molding, assembling, cutting, and folding. Finally, we project a vision for the field 
of kirigami engineering by emphasizing the mechanisms that transform subtle geometric 
characteristics of kirigami surfaces into their unique mechanical properties.  
[DOI: 10.1115/1.4068659] 

1 Introduction and Motivation

The mechanical properties of a surface can be precisely 
engineered by cutting it into a network of interconnected 
components with intricate geometry. We call this process kirigami 
engineering, the twin of origami engineering [1]. Although kirigami 
surfaces can exhibit other distinguishing properties, such as thermal 
[2] or electromagnetic [3] characteristics, this contribution focuses 
on the interplay of geometry and mechanics (Fig. 1). Ideally, the 
distribution of cuts determines the two-dimensional (2D) deforma
tions of a kirigami surface. For example, convex cuts often lead to 
rigid deformations whereas nonconvex cuts result in nonrigid 
deformations (Fig. 1(a)). On the other hand, the thickness of a 
kirigami prototype significantly influences its three-dimensional 
(3D) buckling behavior. Broadly speaking, large thickness generally 
stabilizes 2D deformations, while small thickness may induce out- 
of-plane buckling (Fig. 1(b)). Furthermore, the intrinsic geometry of 
the 2D space where a kirigami surface resides rules its deformation 
characteristics. Nonzero Gaussian curvature imposes more con
straints on the kirigami surface. Thus, nonrigid deformations are 
typically inevitable in a non-Euclidean space, while rigid deforma
tions can be pursued in a Euclidean space (Fig. 1(c)). Lastly, the 
unique connectivity within periodic kirigami can give rise to exotic 
mechanical properties. This is exemplified by the locally isostatic 

lattice, also known as the Maxwell lattice, where the number of 
connections (i.e., constraints) equals the number of degrees-of- 
freedom at the unit cell level. Notable instances include the 
triangular (i.e., kagome) lattice and the square-rhombus lattice (Fig. 
1(d)). The kagome lattice is topologically polarized, which 
concentrates floppy modes on one of its edges and stress-bearing 
modes on the other edge. The square-rhombus lattice is mechan
ically nonreciprocal, which breaks the transmission symmetry of a 
force between two points of the lattice.

In this paper, we review how the geometry of kirigami surfaces 
governs their mechanics. Here, the “geometry” spans not only the 
shapes of cuts and panels, cut distributions, intrinsic curvatures, and 
pattern symmetries, but also practical considerations such as surface 
thickness and the dimension of living hinges. The resulting 
“mechanics” include rigid and nonrigid 2D deformations (Sec. 2), 
3D deformations involving buckling or folding (Sec. 3), and 
metamaterial properties such as topological polarization transfor
mation, static nonreciprocity, and varying Poisson’s ratio (Sec. 4).

2 On Two-Dimensional Deformations

Since kirigami engineering is performed on a surface, the most 
basic deformation mode is the 2D deformation within the surface. In 
this case, the kirigami hinges only allow the connecting panels to 
rotate around axes perpendicular to the surface. In theory, the cutting 
geometry typically determines the deformation mechanics, either 
rigid (i.e., energy-free) or nonrigid (e.g., monostable or bistable), 
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while practically, the substantial hinge stiffness may hinder the 
realization of rigid deformation.

2.1 Nonconvexity and Bistability. A bistable structure is 
nonrigid with an energy barrier on its deformation path. Figure 2(a) 
illustrates a basic quadrilateral kirigami unit that opens a nonconvex 
hole during its early stage of expansion [4]. As the structure expands, 
stresses accumulate until the hole reaches a critical configuration, in 
which two of its edges become collinear. At this juncture, the 
deformed lengths are minimal, corresponding to the peak of an 
energy bump. Once this critical state is surpassed, the stresses drop 
to zero, and the edges revert to their original lengths. Thereafter, the 
hole remains convex, and the deformation energy stays at zero. The 
energy landscape depicted in Fig. 2(a) is computed using a 
simplified mechanical model that employs linear springs along the 
edges and diagonals of the quadrilaterals that can undergo both 
extension and compression. This model is a specific case of a more 
general framework [5], which incorporates both linear springs and 
torsional springs located at the nodal hinges connecting the 
quadrilaterals. In the general formulation, the total (dimensionless) 

deformation energy of a quadrilateral kirigami pattern is expressed 
as 

E x1, x2, …, xNð Þ ¼
1
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X

i,j
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Here, the nodal coordinates xi determine the energy E, by setting the 
deformed edge lengths jjxi − xjjj and the opening angles hi of the 
cuts. The geometry of the undeformed kirigami pattern defines the 
rest lengths ‘ij of the linear springs, and it is assumed that all cuts are 
initially closed so that the rest angles of the torsional springs are 
zero. The displacement energy is averaged over the total number of 
linear springs Ns and the rotation energy is averaged over the total 
number of torsional springs Nc. A key coefficient, k, adjusts the ratio 
between the rotation energy and the displacement energy. The 
deformed nodal positions xi and the corresponding energy E are 
obtained by iteratively moving selected control nodes (i.e., a subset 
of xif g) toward target positions and minimizing E. In the idealized 
case where the hinges have zero rotational stiffness (k ¼ 0), the 
deformation energy of the quadrilateral kirigami arises solely from 

Fig. 1 Kirigami engineering: the interplay between geometry and mechanics: (a) a convex pattern undergoing 
rigid deformation (left) and a nonconvex pattern undergoing nonrigid deformation (right), (b) a thin rotating-square 
sheet exhibiting out-of-plane buckling under uniaxial tension (left) and a thick rotating-square plate exhibiting in- 
plane rotation under uniaxial tension (right), (c) a quadrilateral kirigami pattern in a Euclidean space (the plane) 

transforming rigidly from a compact square to a deployed circle (left) and a quadrilateral kirigami pattern in a non- 
Euclidean space (the sphere) displaying nonrigid shape morphing from a compact spherical square to a deployed 
hemisphere (right), and (d) a triangular kirigami pattern exhibiting topological polarization (left) and a quadrilateral 
kirigami pattern displaying mechanical nonreciprocity (right)
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the extension or compression of the edges and diagonals, thereby 
enabling the convex hole to deploy (theoretically) with zero energy 
cost (Fig. 2(a)).

If a kirigami pattern comprises multiple nonconvex cuts, their 
collective deployment may yield one or more energy barriers. In 

particular, when a single energy barrier is present, the structure is 
bistable upon deployment. Figure 2(b) illustrates such a bistable 
pattern (when k ¼ 0), achieved by inversely optimizing the cut 
distributions within a constrained framework [5]. This approach 
ensures that the deployed boundary nodes align with a target curve 

Fig. 2 Nonconvexity-induced bistability of kirigami structures. (a) Energy landscape of a kirigami unit with a 
nonconvex hole [4]. (b) Energy landscapes of a shape-morphing kirigami tessellation with multiple nonconvex holes 
under varying rotational stiffness k [5]. The data and deformation profiles in (a) and (b) are from bar-and-hinge model 
simulations. (c) and (d) Energy landscapes of motif-inspired kirigami patterns with nonconvex cuts [6]. The patterns in 

(c) have square cores, while the patterns in (d) have triangular cores. (e) and (f) Phase diagrams showing the ratio of 
local minimum energy (at the deployed stable state) to the peak energy (corresponding to the energy barrier), 
g5Emin=Emax, with respect to the scaled hinge thickness t=‘ and the scaled unit length a=‘ of the kirigami units [6]. The 
unit cell in (e) has a square core, while the unit cell in (f) has a triangular core. When g51, the unit cells are monostable. 
When g<1, the unit cells are bistable. (g) Isotropic (with p31m symmetry) and anisotropic (with cm or p1 symmetry) 
bistable deformations of generalized motif-inspired kirigami patterns [7]. Dashed–dotted lines: reflection axes; 
dashed lines: glide reflection axes; dots: rotation centers. The data and deformation profiles in (c)–(g) are from finite 

element simulations. Panel (a) is adapted with permission from Ref. [4]. Copyright 2021 by CC BY 4.0 license. Panel (b) 
is adapted with permission from Ref. [5], Copyright 2019 by Springer Nature. Panels (c)–(f) are adapted with 
permission from Ref. [6], Copyright 2016 by Elsevier. Panel (g) is adapted from Ref. [7], Copyright 2024 by CC BY-NC 4.0 
license.
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while satisfying the geometric conditions required for closing all the 
cuts in an undeployed (compact) state. Consequently, the corre
sponding quadrilaterals in both the undeployed and deployed 
configurations have identical sizes and shapes. Moreover, by 
controlling the boundary angles, the shape of the compact pattern 
can be finely tailored, enabling a smooth transition from a compact 
square to a deployed circle. It should be noted that the bistability 
converts to monostability as k increases, which prevents the cuts 
from opening (e.g., k ¼ 0:001 in Fig. 2(b)). The monostability 
corresponds to physical prototypes manufactured by laser cutting a 
rubber sheet and leaving relatively thick ligaments at the 
intersection of cuts (called living hinges or compliant hinges) to 
connect the quadrilateral panels [5]. In contrast, thin ligaments (e.g., 
k ¼ 0:0001 or 0.00001 in Fig. 2(b)) do not significantly impede 
bistability but are more prone to breakage when the prototype is 
deployed. The free-form quadrilateral patterns offer an expansive 
design space for distributing cuts to achieve shape-morphing 
functionality. However, these patterns are not intentionally designed 
to be bistable or monostable. The primary goal here is to achieve 
target shapes instead of tailoring energy landscapes. Although the 
energy envelopes have a single peak when k is small, it is challenging 
to realize this bistability in solid models with living hinges.

Substantial bistability of a class of periodic kirigami patterns with 
nonconvex cuts is verified through finite element simulations and 
mechanical tests on perforated rubber sheets—a favorable ligament 
thickness can sufficiently trigger bistability and resist fracture upon 
deployment [6]. Here we review only the simulation results and refer 
to Ref. [6] for the tests on real prototypes. Inspired by ancient 
geometric motifs, one of these patterns features square modules with 
four oblique lines enclosing a square core (“tiled” cores in Fig. 2(c)). 
At the specific ratio of ligament thickness to unit length t=‘ ¼ 0:025, 
finite element simulations reveal weak bistability (the lowest curve 
in Fig. 2(c)). In contrast, variant patterns obtained by curving or 
rotating the cores (“circular” or “parallel” cores in Fig. 2(c)) exhibit 
significantly enhanced bistability, as demonstrated by simulation 
curves with substantial energy barriers (the two higher curves in Fig. 
2(c)). The motif-inspired patterns also include a version with 
triangular cores (“tiled” cores in Fig. 2(d)) and corresponding 
variants produced by curving or rotating the cores (“circular” or 
“parallel” cores in Fig. 2(d)). Interestingly, the original triangular 
cores exhibit a much higher energy barrier than their variants at 
t=‘ ¼ 0:025, which is the opposite of the behavior observed with the 
square cores. Furthermore, Figs. 2(e) and 2(f) show that bistability 
can be achieved within a finite region of ligament thickness for both 
the square and the triangular “parallel” cores. Specifically, 
bistability is strong for large a=‘ and small t=‘, because the cuts 
penetrate deeper into nonconvex shapes as a=‘ increases and the 
rotational stiffness of the ligaments becomes smaller as t=‘
decreases. The triangular patterns with “parallel” cores possess 
p31m symmetry (with threefold rotations and some rotation centers 
off mirrors) and exhibit isotropic dilation upon deployment (Fig. 
2(g)). In more advanced developments, these triangular patterns are 
generalized to produce various anisotropic bistable deformations 
under reduced symmetry—e.g., cm symmetry (with mirrors and 
glides but no rotation center) and p1 symmetry (with no mirror, 
glide, or rotation center) in Fig. 2(g)) [7]—and even aperiodic 
bistable deformations [8]. The local nonconvexity of the cuts 
manipulates the nonrigid deformations of these kirigami patterns. 
When the patterns are periodic (e.g., those in Figs. 2(c) and 2(d)), 
their overall behavior mirrors that of the individual unit modules. In 
contrast, for a free-form pattern (e.g., that in Fig. 2(b)), the 
interactions among the nonconvex cuts influence the overall energy 
landscapes, although the rationale behind the presence of only one 
energy peak is unclear. In fact, the optimization approach (that 
designs the pattern in Fig. 2(b)) can be generalized to further enable 
two distinct compact configurations, corresponding to two reverse 
ways of closing the quadrilateral holes, in the quadrilateral kirigami 
pattern with multiple nonconvex cuts [4]. Under this extended 
framework, the designed kirigami pattern exhibits two energy 
barriers near the compact states, connected by an intervening 

mechanism. A systematic method for designing the number and 
location of the energy barriers (or energy minima) has yet to be fully 
developed.

2.2 Compatibility and Rigid Deformation. It is noteworthy 
that nonconvexity is neither a sufficient nor a necessary condition for 
nonrigid deformations in a kirigami pattern. Nonrigid deformations 
arise when the deployment of a nonconvex cut forces the panel edges 
to deform due to the geometric confinement (Fig. 1(a), right, and 
Fig. 2(a)). In the absence of such confinement, even nonconvex cuts 
(e.g., in rotating triangles [9]) can support rigid deformations. 
Conversely, although a single convex cut is generally rigidly 
deployable—yielding rigidly deployable periodic patterns (e.g., 
rotating squares [10])—the overall deformation of free-form 
patterns with multiple convex cuts can be either rigid or nonrigid, 
depending on the interactions among the cuts. Such interactions are 
quantified by a compatibility condition (or termed loop condition) 
for a class of free-form patterns named planar quadrilateral 
kirigami (PQK) [11]. While the PQK is composed of arrayed 
quadrilateral panels and cuts, it is free-form in the sense that the 
panels and cuts can be arbitrary quadrilaterals as long as the cuts are 
convex, i.e., they can close to a straight line.

Figure 3(a) shows a 3-by-3 PQK pattern with four interconnected 
cuts forming a loop. Each cut is a convex quadrilateral, satisfying 
ai þ bi ¼ ci þ di for i ¼ 1, 2, 3, 4, so that they can individually 
deploy with one degree-of-freedom, characterized by an opening 
angle ai or bi (i can be 1, 2, 3, or 4). To obtain the loop condition, we 
suppose that the collective deployment of the four cuts is rigid. Then, 
the connections between the cuts imply that the opening angle of one 
cut, e.g., b1, determines the opening angles of its neighboring cut, e. 
g., a4 and b4, expressed by 

ai ¼ p − biþ1 (2) 

and 

cos bi ¼ giðcos biþ1Þ (3) 

respectively, where the index i cycles from 1 to 4 (with iþ 1 taken as 
1 when i ¼ 4). The function gi maps the opening angle biþ1 in one 
cut to its counterpart bi in the adjacent cut. The form of gi depends on 
the cut side lengths ai, bi, ci, di and is given explicitly by [11] 

gi xð Þ ¼ cos arccos
a2

i þ e2
i − d2

i

2aiei

þ arccos
b2

i þ e2
i − c2

i

2biei

� �

(4) 

with 

ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
i þ d2

i þ 2aidix

q

(5) 

The loop formed by the four cuts naturally leads to the composition 

g¢g1 � g2 � g3 � g4 (6) 

which maps b1 to a new angle b̂1 such that cos b̂1 ¼ gðcos b1Þ. The 
operator � refers to the function composition, e.g.,  
ðg1 � g2ÞðxÞ ¼ g1½g2ðxÞ�. This process is shown in Fig. 3(a). For a 
deployed configuration where the panels remain undeformed and 
the connections intact, b1 must be invariant under the map g. This 
requirement defines the compatibility condition 

gðcos b1Þ ¼ cos b1 (7) 

When all the cuts are parallelograms (i.e., ai ¼ ci and bi ¼ di, 
i ¼ 1, 2, 3, 4), g reduces to an identity function gðxÞ ¼ x, so the 
compatibility condition (7) holds for any b1 2 ½0, p�, as indicated by 
the straight line in Fig. 3(c). In this case, the 3-by-3 PQK is rigidly 
deployable.

As long as all the cuts are parallelograms, general M-by-N PQK is 
also rigidly deployable, because the compatibility condition can be 
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verified for any loop of cuts. A rigidly deployable PQK pattern can 
be generated by solving a system of linear equations based on given 
coordinates of a subset of nodes and given cut aspect ratios. This 
procedure can be implemented either through a global construction 
[11] or an additive construction [12]. In both cases, the linear nature 
of rigidly deployable PQK streamlines the inverse design process. 
Figure 1(c), left, illustrates a shape-morphing kirigami pattern 
obtained by the global approach [11]. The kirigami pattern is formed 
by parallelogram cuts, which determines the rigid deployment from 
a square to a circle. Moreover, the aforementioned PQK can be 
further generalized to genus-n PQK—characterized by n holes in its 
global geometry—whose rigid deployability is guaranteed by the 

existence of a deployed state with parallelogram cuts. Under this 
terminology, the original PQK is genus-0. It is important to note that 
the existence of a deployed state essentially imposes an additional 
constraint to a genus-n PQK pattern. In other words, while genus-0 
PQK necessarily possesses a (rigidly) deployed state if all cuts are 
parallelograms, genus-n (n � 1) PQK with parallelogram cuts may 
not have a (rigidly) deployed state [11].

The generalization to genus-n paves the way for more 
sophisticated inverse designs, such as tailoring both the exterior 
and interior boundary shapes. Figure 3(g) shows a genus-1 PQK 
prototype. In the compact state, the exterior boundary forms a 
square, while the interior boundary approximates a circle. By 

Fig. 3 Compatibility-induced rigidly deployable kirigami versus incompatibility-induced nonrigidly deployable 
kirigami. (a) and (b) Deployment of 3-by-3 planar quadrilateral kirigami pattern. Notice that, in (a), all the four voids are 

parallelograms while, in (b), only three voids are parallelograms (the void at the bottom-right is not a parallelogram). 
(c) The curves of cos b̂1 versus cos b1 for the planar kirigami patterns. (d) and (e) Deployment of 3-by-3 spherical 
quadrilateral kirigami [13]. All the four cuts in (d) are spherical parallelograms, while those in (e) are not spherical 
parallelograms. (f) The curves of cos b̂1 versus cos b1 for the spherical kirigami in (d) and (e) [13]. In (a), (b), and (d), (e), 
the opening angles ai , bi , ci , di (i51, 2, 3, 4) and ̂b1 can be determined by the geometry of these patterns (i.e., the side 
lengths ai , bi , ci , and di , for i51, 2, 3, 4) and one opening angle, say, b1. The arrows show the dependence of these 

angles from b1 to ̂b1. (g) A genus-1 planar kirigami prototype that can morph between a compact state with a circular 
hole inside a square (left) and a deployed state with a square hole inside a circle (right). The prototype was 3D-printed 
using thermoplastic polyurethane (TPU). The frames were 3D-printed using polylactic acid (PLA). (h) A spherical 
kirigami prototype that can morph between two stable states—a compact spherical square and a deployed dome 
[13]. The prototype was assembled by joining 3D-printed resin panels at their pin joints. In (g) and (h), auxiliary gray 
lines highlight the cut distributions on the compact configurations. Panels (d), (e), (h) are adapted with permission 
from Ref. [13], Copyright 2022 by American Physical Society.
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deploying the prototype, these shapes can be reversed: the exterior 
boundary becomes circular, and the interior boundary becomes 
square. The prototype was 3D printed using thermoplastic polyur
ethane (TPU). Although the PQK is rigidly deployable in theory— 
since its voids (i.e., small holes) are all parallelograms and a 
deployed state exists—stresses accumulate at the living hinges 
during deformation. As a result, the prototype is monostable. Stiff 
frames (made of polylactic acid, PLA) are used to lock the 
deformation.

It is noteworthy that the shape-morphing kirigami shown either in 
Figs. 2(b) or 3(g) is designed through numerical optimization. 
Leveraging local deformation characteristics of the rotating units, 
the inverse design may be alternatively achieved in a “numeric-free” 
manner. This principle has been applied to triangular patterns, where 
the design is implemented by directly transforming the nodal 
coordinates of a standard kagome pattern, guided by the maximum 
shear strain distribution associated with the target shape change [9].

2.3 Incompatibility and Nonrigid Deformation. We have 
shown that the existence of a deployed state with parallelogram cuts 
is sufficient for the rigid deployability of PQK. But is this condition 
also necessary? The answer is yes. In fact, even if only one cut is not 
a parallelogram, it can be proven that g00 > 0 under the constraint 
ai þ bi ¼ ci þ di, i ¼ 1, 2, 3, 4 [11]. This implies that g is a strict 
convex function. Consequently, the compatibility condition (7) can 
be satisfied for at most two distinct values of b1, and therefore the 
PQK is not rigidly deployable. As illustrated in Fig. 3(b), nonrigid 3- 
by-3 PQK must break a hinge connection to preserve the sizes and 
shapes of panels when b1 violates the compatibility condition (since 
b̂1 6¼ b1). This behavior is depicted by the higher curve in Fig. 3(c). 
If general M-by-N genus-n PQK has at least one nonparallelogram 
cut, it is not rigidly deployable, since every 3-by-3 section 
containing that cut loses rigid deployability. Our discussion 
indicates that the rigid (or nonrigid) deformations of PQK are 
fundamentally determined by the geometric compatibility (or 
incompatibility) of its constituent cuts. This insight is captured in 
the following theorem [11]:

THEOREM 1 (genus-n deployability). Genus-n (n � 0) PQK is 
rigidly deployable if and only if there exists a deployed state with all 
the cuts forming parallelogram voids.

THEOREM 1 indicates that it is possible to customize rigid or 
nonrigid deformations of free-form quadrilateral kirigami on a 
plane. This diversity of deformation features is essentially 
facilitated by the planarity of the space where the PQK reside. In 
contrast, if the space is intrinsically curved, i.e., of nonzero Gaussian 
curvature, achieving rigid deployment may be impossible for a loop 
of cuts. A study on this issue is conducted for spherical quadrilateral 
kirigami (SQK), which retains the same nodal connections as PQK, 
but all the straight cuts on a plane become geodesic lines (i.e., great- 
circle arcs) on a sphere [13]. Figure 3(d) shows a 3-by-3 SQK pattern 
that is an analogy to the rigidly deployable PQK with parallelogram 
cuts. That is, opposite side lengths are equal for each cut, expressed 
by ai ¼ ci and bi ¼ di for i ¼ 1, 2, 3, 4. Here, the side lengths ai, bi, 
ci, and di are geodesic lengths on the sphere. For conciseness, we call 
the cuts with equal opposite side lengths spherical parallelogram 
cuts. We suppose that the Gaussian curvature of the base sphere is K. 
The compatibility condition still has the form (7), while the loop 
function g becomes [13] 

ge xð Þ ¼
Pþ Qð Þxþ P − Qð Þ

Pþ Qð Þ þ P − Qð Þx
(8) 

with 

P, Q ¼
Y4

i¼1

cos 2 ai6bið Þ
ffiffiffiffi
K
p

2

� �

(9) 

In this case, the compatibility condition (7) has two solutions 
cos b1 ¼ 61, indicating that the 3-by-3 SQK only has two 

compatible configurations. These two configurations are both 
compact, with all the cuts closed, as captured by the lower curve 
in Fig. 3(f). For M-by-N SQK with spherical parallelogram cuts, the 
compatible configurations are also two compact configurations as 
consistent with all its 3-by-3 parts. In other words, the SQK with 
spherical parallelogram cuts is not rigidly deployable, which is 
essentially different from the rigidly deployable PQK with 
parallelogram cuts. This difference in deployability originates 
from different Gaussian curvatures between the sphere and the 
plane. With a simplified spring model, the nondimensionalized 
deployment energy ~ES of the 3-by-3 SQK with parallelogram cuts 
can be expressed by [13] 

~ES ¼
1

8

X4

i¼1

aibið Þ

" #2

K2 sin 4b1 þ O L6K3½ � (10) 

where L ¼ max a1, b1, …, a4, b4f g. Equation (10) clearly shows that 
zero K leads to zero ~ES, suggesting the rigid deployability for PQK. 
By contrast, ~ES is positive for nonzero K at cos b1 2 ð−1, 1Þ, 
indicating the nonrigid deployability for SQK. When cos b1 ¼ 61, 
~ES is zero even for nonzero K, corresponding to the two compact 
compatible configurations. By perturbing the nodal positions of the 
SQK patterns with spherical parallelogram cuts (e.g., the one in 
Fig. 3(d)), the compatible configuration at cos b1 ¼ 1 can be moved 
to inside ð−1, 1Þ, e.g., at cos b1 ¼ 0 as shown in Fig. 3(e) and by the 
higher curve in Fig. 3(f). After the perturbation, the cuts are not 
necessarily spherical parallelograms, but the cut side lengths 
ai, bi, ci, di still satisfy ai þ bi ¼ ci þ di for i ¼ 1, 2, 3, 4, guarantee
ing that the cuts can close to geodesic lines at cos b1 ¼ −1. Under 
this condition, it can be proven that g00 > 0 for cos b1 2 ½−1, 1�, so 
that the loop function g (whose special form is ge when ai ¼ ci and 
bi ¼ di) is a strict convex function and the compatibility condition 
(7) holds true only for at most two distinct values of b1 [13]. This 
means 3-by-3 SQK, with either spherical parallelogram or non
parallelogram cuts, is not rigidly deployable, and consequently, 
general M-by-N SQK is not rigidly deployable because it contains 3- 
by-3 components. This conclusion is described by the following 
theorem [13]:

THEOREM 2 (Spherical compatibility). SQK has either one or two 
compatible configurations.

Figures 3(d)–3(f) illustrate the SQK patterns with two compatible 
configurations. Certain SQK patterns may also have only one 
compatible configuration, i.e., the undeployed configuration. We 
refer to the supplementary material of Ref. [13] for such cases. 
Theorems 1 and 2 reveal that the Gaussian curvature plays a critical 
role for the deployment of kirigami structures. While on a plane, one 
can design a rigidly deployable kirigami pattern whose boundary 
morphs from a square to a circle (Fig. 1(c), left), such morphing 
pattern is bistable on the curved sphere (Fig. 1(c), right). Figure 3(h) 
shows a prototype that can be deployed from a compact spherical 
square to a compatible dome with its boundary forming a small 
circle. The square and the dome have the same radius of curvature. 
The resin panels were 3D printed separately and then assembled at 
the pin joints. The pin joints can rotate freely so the prototype is 
bistable as predicted by the compatibility theorem.

Kirigami deployment on a general curved surface is an intriguing 
topic that deserves further studies. However, rigid kirigami panels 
with fixed curvatures cannot be freely deployed/moved within a 
surface with varying curvatures. Instead, the kirigami panels need to 
be flexible/soft in order to deform and to fit a curved surface with an 
inhomogeneous curvature distribution [14]. The compatibility on a 
generally curved surface may be defined by an optimization 
framework and may be material-dependent.

2.4 Symmetry Considerations. Many classical kirigami pat
terns are periodic tessellations such as the kagome kirigami 
(Fig. 4(a)) and the rotating-square kirigami (Fig. 4(b)). These 
tessellations can be characterized by the wallpaper groups (or 
termed plane crystallographic groups), which contain two 
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independent translators [15]. There are in total seventeen wallpaper 
groups representing all the planar translational symmetries distin
guished by rotation, reflection, and glide reflection (see Table 1). 
The kagome pattern is p6m, featuring sixfold rotations and 
reflections in six distinct directions. The rotating-square pattern is 
p4m, featuring fourfold rotations and reflections in four distinct 
directions. Both the kagome pattern and the rotating-square pattern 
are rigidly deployable. Wallpaper groups can also describe some 
bistable patterns. For example, the motif-inspired patterns with 
square cores (Fig. 2(c), top left) are p4g, featuring fourfold rotations 
and reflections in only two directions; the motif-inspired patterns 
with triangular cores (Fig. 2(d), top left) are p31m, featuring 
threefold rotations and rotation centers off mirrors. The bistable 
patterns are not rigidly deployable, but still deployable, i.e., 
compatible between a compact configuration and a frustration-free 
expanded configuration. In fact, for any of the seventeen wallpaper 
groups, one can construct deployable kirigami with the correspond
ing symmetry. The symmetry can be specified for either the compact 
or the deployed pattern. This insight is established in the following 
two theorems [16]:

THEOREM 3 (wallpaper group deployability: compact pattern). For 
any group G among the 17 wallpaper groups, there exists a 
deployable kirigami pattern in G.

THEOREM 4 (wallpaper group deployability: deployed pattern). 
For any group G among the 17 wallpaper groups, there exists a 
deployable kirigami pattern with its final deployed shape in G.

These two theorems are proven by explicitly presenting the 
kirigami patterns for all seventeen wallpaper groups [16]. Moreover, 

one can build connections between compact and deployed 
symmetric patterns with arbitrary size change or symmetry change. 
This conclusion is established in the following two theorems [16]:

THEOREM 5 (Wallpaper group deployability: Size change). For 
any deployable wallpaper group pattern with n-fold rotational 
symmetry, we can design an associated pattern with n-fold 
rotational symmetry and arbitrary size change.

THEOREM 6 (Wallpaper group deployability: Symmetry change). 
Gain, loss and preservation of symmetry are all possible throughout 
the deployment of a kirigami pattern.

The arbitrary size changes can be achieved through symmetry- 
preserving expansion to cuts or panels. The arbitrary symmetry 
changes are justified with specific kirigami patterns, for example, the 
temporal rotational symmetry loss (p6m to p31m to p6m) in Fig. 4(a) 
and the reflectional symmetry preservation (p4m to p4g to p4m) in 
Fig. 4(b).

The wallpaper groups can describe rotational symmetries of order 
1, 2, 3, 4, or 6. Quasi-crystal kirigami expands the design space of 
deployable kirigami beyond the wallpaper groups to quasi-crystal 
tilings, which lack translational symmetry but can exhibit high-order 
rotational symmetries such as fivefold (Penrose tiling), eightfold 
(Ammann–Beenker tiling), and twelvefold (Stampfli tiling) [17]. 
Starting from given compact quasi-crystal tilings, rigidly deploy
able kirigami patterns can be obtained by adding tiles (the expansion 
tile method), removing tiles (the tile removal method), or changing 
the connectivity of the tiles (the Hamiltonian cycle method). The 
expansion tile method achieves significant size change upon 
deployment of the kirigami (Figs. 4(c)–4(e)). The tile removal 

Fig. 4 Plane symmetry group and quasi-crystal kirigami. (a) and (b) Wallpaper group kirigami [16]. (a) The kagome 

kirigami pattern has p6m symmetry (a six-fold rotation center plus reflection axes) at the compact (left) and fully 
deployed (right) states while the partially deployed configuration (middle) has p31m symmetry (an off-mirror three- 
fold rotation center plus reflection axes). (b) The rotating-square kirigami pattern has p4m symmetry (a four-fold 
rotation center plus reflection axes at 45 deg) at the compact (left) and fully deployed (right) states while the 
partially deployed configuration (middle) has p4g symmetry (a four-fold rotation center plus reflection axes at 
90 deg). In (a) and (b), key rotation centers (dots) and reflection axes (dashed lines) that can be used for determining 
their wallpaper group types are highlighted. (c)–(e) Quasi-crystal kirigami [17]. (c) A fivefold Penrose kirigami 

pattern. (d) An eightfold Ammann–Beenker kirigami pattern. (e) A twelvefold Stampfli kirigami pattern. In (c)–(e), 
the compact states, intermediate deployed states, and the fully deployed states are shown. Panels (a) and (b) are 
reproduced with permission from Ref. [16], Copyright 2021, the Author(s). Panels (c)–(e) are reproduced from Ref. 
[17], Copyright 2022 by CC BY 4.0 license.
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method reduces the overall size change accompanied by the 
variation of void shapes. The Hamiltonian cycle method can realize 
extremely large size change throughout the kirigami deployment.

3 On Three-Dimensional Deformations

From a physical perspective, two key factors govern the 
deformation of kirigami surfaces with living hinges. The first factor 
is the distribution of cuts. By assuming in-plane (or generally, in- 
surface) rotations, one can analyze the 2D deformation character
istics based solely on the cut distribution. Such analysis is reviewed 
in Sec. 2 to characterize stability (Fig. 2), rigid or nonrigid 
deformation (Fig. 3), and deformation symmetry (Fig. 4). While the 
in-plane stiffness of the living hinges may affect the deformation 
energy landscapes (e.g., transferring a theoretically bistable pattern 
into monostable as shown in Figs. 2(e) and 2(f)), it has little effect on 
the deformed shape as predicted in theory, as long as the deformation 
is within the 2D surface (e.g., Fig. 3(g)). By contrast, a more intrinsic 
geometric parameter—which is the second factor governing the 
deformation of kirigami surfaces with living hinges—is the ratio of 
the sheet thickness to the ligament width. This factor controls the 

emergence of out-of-plane deformation of a flat sheet. In addition, the 
kirigami hinges can be intentionally endowed with rotational axes 
biased from the normal of the kirigami surface. This implementation 
facilitates 3D shape morphing under controllable deformations.

3.1 Buckling of Thin Kirigami Sheets. Figure 5(a) illustrates 
a rotating-square plastic sheet that is stretched in the direction along 
the square diagonals. The geometry of the sheet is described by its 
thickness t, ligament width d, and square length ‘. The in-plane 
bending of the ligaments occurs at the initial deformation stage, with 
the stiffness of the sheet expressed by [18] 

�E ¼
2

3
E

d

‘

� �2

(11) 

in which E is Young’s modulus of the material. Once the in-plane 
strain increases to a critical value ec, the ligaments may buckle out- 
of-plane, causing 3D deformation of the sheet. Assuming that the 
initial buckling occurs in the small deformation regime, the critical 
strain ec can be derived as [18] 

Table 1 Characterization of the 17 wallpaper groups and the kirigami patterns [15,16] 

Images are adapted or reproduced with permission from Ref. [16], Copyright 2021 by the Author(s).
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2

t

d

� �2

(12) 

Equation (12) shows that the critical strain ec depends only on the 
ratio of sheet thickness to ligament width, t=d. If the sheet is thin 
enough compared to the ligament width, the buckling happens 
easily. For example, when t=d � 0:085 (corresponding to the 
prototype in Fig. 5(a), top), one can calculate ec � 0:0036. 
Conversely, a thicker sheet makes it harder for buckling to occur.

Another type of kirigami that exhibits out-of-plane buckling has 
linear parallel cutting patterns, also known as ribbon kirigami, 
facilitating extremely high stretchability [19–21]. The buckled 
profile of ribbon kirigami is largely affected by cutting distance [22]. 
As illustrated in Fig. 5(b), the two parameters ‘c=‘x and ‘c=‘y dictate 
the 3D buckling configurations of the thin polyethylene tereph
thalate (PET) sheets. Here, ‘c is the cut length; ‘x and ‘y are the 

spacing between two adjacent cuts in the transverse and longitudinal 
directions, respectively. First, if the transverse spacing is large (i.e., 
‘c=‘x ¼ 1), the cuts do not overlap in the longitudinal direction, 
causing weak interactions and small out-of-plane deformation. 
Second, if there is overlap between the cuts (i.e., ‘c=‘x > 1), large 
out-of-plane deformations occur, leading to symmetric or antisym
metric buckling configurations. Roughly speaking, when the 
longitudinal spacing is small (i.e., large ‘c=‘y), the buckled sheet 
is antisymmetric and the configuration is monostable. In contrast, 
when the longitudinal spacing is large (i.e., small ‘c=‘y), the buckled 
sheet can be symmetric. In this case, each repeating unit is bistable 
and switchable between the symmetric state and the antisymmetric 
state under external indentation. The coexistence of symmetric and 
antisymmetric states can spontaneously appear when the cutting 
geometry transits from the symmetric side to the antisymmetric side. 
We refer to Ref. [22] for more rigorous geometric mechanics of the 
symmetric/antisymmetric state selection, in which the competition 

Fig. 5 Out-of-plane buckling in kirigami. (a) A thin kirigami sheet with square cuts (scaled sheet thickness t=d �
0:085 and scaled hinge width d=‘50:06) that buckles under uniaxial tension 45 deg inclined to the cuts (top) and the 
critical strain ec that triggers the buckling of such kirigami sheets as a function of ðt=dÞ

2 
(bottom) [18]. The dots are 

from experimental data and the dashed line is from theoretical prediction. (b) Parallel cutting sheets [22]. Geometry 
of the sheets is determined by the cut length ‘c , the transverse spacing ‘x , and the longitudinal spacing ‘y (top left). 
The phase diagram shows buckling configurations of these sheets under uniaxial tension with respect to the 
geometric parameters ‘c=‘y and ‘c=‘x (bottom left). Representative buckled prototypes are provided (right). 
(c) Nanomembranes (bilayer of silicon nanomembrane and thin polymer film) with cross-cuts (top left) and chiral 
curve-cuts (bottom left) can transform into 3D buckled configurations (finite element simulations, middle; scanning 
electron microscopy (SEM) images, right) under compressive loading (arrows at the anchors) [23]. (d) Gold nanofilms 

with flower-like cuts (top left) and concentric cuts (bottom left) can transform to 3D buckled configurations (right) 
under global ion beam irradiation (SEM images) [28]. Panel (a) is adapted with permission from Ref. [18], Copyright 
2017 by American Physical Society. Panel (b) is adapted with permission from Ref. [22], Copyright 2018 by American 
Physical Society. Panel (c) is adapted with permission from Ref. [23], Copyright 2015 by the PNAS license. Panel (d) is 
adapted from Ref. [28], Copyright 2018 by the CC BY-NC 4.0 license.
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between the bending energy of the plates Ub and the elastic energy of 
hinges Uh in the symmetric configuration is analyzed. The 
competition is dominated by the geometry of the cuts, expressed 
as follows [22]: 

Ub

Uh

�
‘y

‘x

‘y

Le

(13) 

in which Le ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð‘c − ‘xÞ
2
=4þ ‘2

y

q

is the effective longitudinal 
spacing between the cuts. In Fig. 5(b), the symmetric patterns exist 
approximately in the regime that ‘y=‘x > 1 and 0:75 < ‘y=Le < 1, 
suggesting large Ub over small Uh. In contrast, if Uh is large for the 
symmetric configuration, the buckled sheet tends to have antisym
metric configuration, in which the elastic hinge has almost no 
deformation, i.e., Uh is almost zero.

The buckling of thin kirigami sheets can be triggered by 
compression loading as well. This effect is used in a mechanically 
driven approach to assemble complex 3D structures from 2D 
membranes, in scales from macro to micro-and nano-and in 
materials ranging from monocrystalline silicon to plastic and metal 
[23]. With the cutting patterns on the membranes, in-plane 
compressive forces (introduced via prestrained elastomer sub
strates) can induce out-of-plane buckling, transforming flat 
precursors into deterministic 3D configurations. The cuts can be 
designed to define the buckled geometries. For example, as 
illustrated in Fig. 5(c), the cross-cut pattern (top) generates a 
pyramidal structure with mirror symmetry while the chiral curve-cut 
pattern (bottom) assembles a circular configuration with rotational 
symmetry. Moreover, this mechanical-driven assembling strategy 
can be applied to hybrid membrane-ribbon systems [23], multi
layered ribbons [24], and hybrid origami-kirigami membranes [25]. 
All these assemblages demonstrate out-of-plane popping with 
compressive forces applied to the discrete anchors. Similar popping 
effects arise when chiral kirigami membranes with continuously 
closed boundaries are subjected to controlled stretching and release 
[26] or when engineering steel sheets with chiral cuts are directly 
lifted out-of-plane [27].

In addition to stretching or compression, kirigami buckling can be 
induced by noncontact loading. For example, the perforated gold 
nanofilm buckles under global ion beam irradiation [28], as 
illustrated in Fig. 5(d). The buckling profile is governed by the 
geometry of the slits. The cantilevers bend upward in the flower-like 
pattern (Fig. 5(d), top) while the thin strips bend downward in the 
concentric pattern (Fig. 5(d), bottom).

3.2 Eliminating Out-of-Plane Deformations With Folds and 
Cuts. As reviewed above, the out-of-plane buckling can be 
leveraged to induce desired 3D deformations in thin kirigami 
sheets. However, the out-of-plane motion is detrimental to the 
kirigami mechanisms that perform their functionality only inside a 
plane [4,12,29]. Fabricating kirigami mechanisms aimed at in-plane 
deformations primarily involves 3D printing [29], cutting thick 
plates [5], molding [12], or assembling building blocks [4]. The first 
three approaches commonly use tough materials (e.g., TPU for 3D 
printing, rubber for cutting, liquid rubber, or plastic for casting) to 
create the ligaments that serve as compliant hinges. It is crucial to 
balance the stiffness and strength of the compliant hinges: a large 
ligament enhances strength and prevents failure, but it also increases 
rotational stiffness, inducing considerable restoring forces that 
impede the opening/closing of cuts. One promising way to softening 
the hinges while not trading off their strength is to introduce fabric 
hinges that weave through the rubber or plastic panels during the 
molding process [12,30]. The assembling approach involves 
fabricating each panel separately (e.g., through 3D printing or 
folding paper) and connecting the panels with tape [4]. The fabrics or 
tape, as living hinges, provide very low rotational stiffness, 
beneficial for free in-plane rotation. However, they may suffer 
from low out-of-plane stiffness. As a result, the kirigami 
mechanisms with such hinges may be too flexible to maintain their 
planar shape without external support.

If out-of-plane buckling is undesired for thin kirigami sheets, the 
most straightforward solution is to constrain the sheets in a plane. 
However, this may cause large in-plane bending stress at the 
ligaments. For example, the cutting end easily breaks when a 
rotating-square paper unit is stretched (Fig. 6(a), inset). The stress 
concentration can be eliminated by introducing additional folds into 
the cuts. Figure 6(a) illustrates the kagome kirigami (left) and the 
rotating-square kirigami (right) deployed with designed mini folds 
[31]. At each cutting end, three folds are added to make a protruding 
tetrahedron hinge, which offers one degree-of-freedom of rotation 
for the in-plane deformation of the kirigami. This kinematics is 
consistent with that of the ideal rotating-square kirigami in which 
axial rotation at the cutting ends drives the opening and closing of 
cuts. There is no tendency of buckling for the in-plane deformation 
of the kirigami sheets with folding hinges, which are therefore 
kirigami mechanisms. Moreover, the folding hinge can have one 
more degree-of-freedom if out-of-plane deformation is allowed. The 
multiple degrees-of-freedom can be harnessed to produce multi
modal deformations of the kirigami sheets [31].

By combining cutting, folding, and pasting, one can introduce 
intrinsic curvature to a flat surface and transform it into complex 3D 
structures of finite thickness. This principle underlies the concept of 
lattice kirigami, in which portions of material are removed or 
inserted before resealing the cuts via basic operations such as 
“climb” and “glide” [32–34]. Using lattice kirigami, one can create 
triangular or square patterns on the top surface of a 3D structure, as 
illustrated in Fig. 6(b). The triangles are on the top surfaces of the 
octahedra, while the squares are on the top surfaces of the 
cuboctahedra. These polyhedra interlock tightly, preventing any 
relative rotation of the triangles or squares. Although the lattice 
kirigami does not deform in plane, it indeed lifts the dimension of a 
flat surface.

The paradox of finite thickness and in-plane deformation from 
one piece of paper is addressed via a new approach called folded 
kirigami, which introduces folds and cuts to a flat surface and 
subsequently folds it into thick kirigami mechanisms [35]. Here, the 
dimension lifting is realized by rejoining faces, instead of resealing 
cuts. For a target kirigami pattern (e.g., the kagome pattern), an 
extended high-genus pattern is designed with appropriate sets of 
creases and cuts (Fig. 6(c), far left), and then folded to form the 
kirigami mechanism with finite thickness (Fig. 6(c), middle left). As 
a result, hinges perpendicular to the base triangles are created, 
allowing free in-plane rotation between the triangular prisms of the 
kagome folded kirigami. The fully deployed configuration with 
hexagonal holes and the fully retracted void-free configuration of the 
kagome folded kirigami are demonstrated in Fig. 6(c), middle left. 
This paradigm can also be used to make thick rotating-square 
mechanisms, as illustrated in Fig. 6(c), right. Moreover, the folded 
kirigami can be guided by explicit formulations that generate 
diverse irregular crease-cut patterns, including two representative 
mechanical metamaterial patterns of geometric and mechanical 
complexity: the transformable polarized kagome metamaterial and 
the nonreciprocal square-rhombus metamaterial, which will be 
discussed later. Importantly, the folded kirigami properly balance its 
in-plane stiffness and out-of-plane stiffness and strength—the 
folding hinges have quite low rotational stiffness so that the folded 
kirigami can be deployed and retracted easily as 2D mechanisms, 
and meanwhile, the cellular structures of the folded kirigami can 
sufficiently resist out-of-plane loading before large bending 
deformation or failure occurs. Such a combination of high morphing 
efficiency and high flexural stiffness is particularly useful in robotic 
materials [36,37].

3.3 Three-Dimensional Shape Morphing. Beyond shape 
morphing within a 2D surface (e.g., Fig. 2(b) and Figs. 3(g) and 
3(h)), kirigami provides promising strategies for transforming 
surfaces in the 3D space. Such transformations can be categorized as 
follows: from one open surface to another open surface (Figs. 7(a) 
and 7(b)), from an open surface to a closed surface (Figs. 7(c) and 
7(d)), and from one closed surface to another closed surface 
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(Figs. 7(e) and 7(f)). For all the examples illustrated in Fig. 7, the 
shape-morphing is geometry-dominated because the panel defor
mations are quite small compared to their rigid motions (i.e., 
rotations and translations) on the morphing path. The quadrilateral 
kirigami pattern in Fig. 7(a) is designed by matching the size and 
shape of the corresponding panels in the compact flat state and the 
deployed curved state, which are therefore geometrically compat
ible [5]. The pattern is bistable in theory but the prototype is 
monostable due to the significant rotational stiffness of the living 
hinges. The compatibility between the compact and the deployed 
kirigami surfaces can also be obtained in an indirect manner. For 
example, the conformal mapping from a target curved domain (Fig. 
7(b), right) to a flat domain (Fig. 7(b), left) defines a locally isotropic 
scale factor that varies from one unit cell to another. By matching the 
scale factor and the expansion stiffness at each unit cell, one can 
transform the flat domain into the target curved domain [38]. This 
principle is implemented with the motif-inspired kirigami unit cell 
with a triangular core (Fig. 2(d), top left, and Fig. 7(b)). The unit cell 
provides isotropic auxetic expansion with tunable stiffness con
trolled by the size and orientation of the triangular core. The 
resulting kirigami pattern has an inhomogeneous cut distribution 

(Fig. 7(b), left) and the prototype is stable at either the flat (Fig. 7(b), 
left) or the curved (Fig. 7(b), right) state.

Transformation from an open surface to a closed surface involves 
aligning properly designed open boundaries to “close” the shape. 
The aligning process can be realized from either a wrapping strategy 
[39–41] or a deploying strategy [42]. The wrapping strategy, for 
example, cuts a flat surface into multiple strips (Fig. 7(c), left) and 
seamlessly attaches them onto a base sphere (Fig. 7(c), right) [40]. 
The deploying strategy can be implemented by optimizing a free-form 
quadrilateral pattern (Fig. 7(d), left) to make it compatible with a 
deployed configuration fitting a target closed surface (Fig. 7(d), left) 
[42]. The quadrilateral pattern has considerable degrees-of-freedom 
upon 3D deployment, which enables it to deploy to a target shape of 
high complexity in geometry and even in topology.

A closed surface can be formed by sewing together the free 
boundaries of one or more open surfaces. In this context, morphing 
on a closed surface requires the synchronous evolution of its 
constituent units to maintain proper adjacency across the stitched 
boundaries, which imposes stricter constraints than morphing open 
surfaces individually. While the pure kirigami approach is 
efficacious in closing an open surface (Fig. 7(d)), the combination 

Fig. 6 Dimension lifting of kirigami with folds and cuts. (a) The kagome (left) and rotating square (right) kirigami with 
tetrahedral folding hinges [31]. The folding hinges allow free deployment and eliminate the out-of-plane buckling of 

the thin sheets. (b) The octahedral (left) and cuboctahedral (right) lattice kirigami can be constructed from one piece of 
paper with folds and holes [33]. The thick structures are interlocked tightly, prohibiting in-plane deformations. (c) The 
kagome (left) and rotating-square (right), made with the so-called “folded kirigami” approach, can be manufactured 
from a single piece of paper with both folds and cuts [35]. The thick mechanisms have perpendicular folding hinges, 
allowing nearly free in-plane deformations. Panel (a) is adapted with permission from Ref. [31], Copyright 2019 by the 
PNAS license. Panel (b) is adapted with permission from Ref. [33], Copyright 2016 by CC BY-NC 4.0 license. Panel (c) is 

adapted with permission from Ref. [35], Copyright 2024 by the Author(s).
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of cuts and folds enables controllable morphing between different 
closed surfaces with preserved topology (Fig. 7(e)) or changed 
topology (Fig. 7(f)) [43]. This combination facilitates precise 
morphing control by balancing flexibility and controllability— 
diagonal folds in quadrilateral panels allow finer curvature 
approximation with fewer panels, while revolute joints at cut 
intersections guide the bistable morphing process.

4 Mechanical Metamaterial Properties

Recently, the intersection of advanced physical systems and 
metamaterial design has led to the discovery of new classes of 

mechanical metamaterials, for example, from topological insulators 
[44,45] to topological mechanical metamaterials [46–49], and from 
nonreciprocal optical or photonic devices [50,51] to nonreciprocal 
mechanical metamaterials [52–57]. Topological mechanical 
responses are attributable to the topology of phonon band structures 
of the metamaterials. Nonreciprocity breaks the transmission 
symmetry of a force between two points of the metamaterials. 
Interestingly, the topological and the nonreciprocal mechanical 
metamaterials have found their forms in locally isostatic lattices 
[58], as known as Maxwell lattices [59]: the kagome lattice for 
transformable topological mechanics [48] and the square-rhombus 
lattice for nonreciprocity [52]. In terms of geometric layouts, these 

Fig. 7 Three-dimensional shape morphing of kirigami structures. (a) Monostable rubber sheet with a quadrilateral 

cutting pattern that expands to a hyperbolic paraboloid [5]. (b) Bistable rubber sheet with a motif-inspired cutting 
pattern that expands to an irregular surface with mixed curvature [38]. (c) Developable paper net that wraps a sphere 
[40]. (d) Quadrilateral kirigami pattern that deploys to a double torus [42]. (e) Bistable assemblage (top) and 
prototype (bottom) that deploys from a cube to a sphere [43]. The prototype was made by joining 3D-printed 
polylactic acid (PLA) panels with thin metal rods (inset). (f) Bistable assemblage (top) and prototype (bottom) that 
deploys from a sphere to a torus [43]. The prototype was made by joining 3D-printed PLA panels with thick screws 

and nuts (inset). In (e) and (f), the energy plots are from simulations with bar-and-hinge model. Panel (a) is adapted 
with permission from Ref. [5], Copyright 2019 by Springer Nature. Panel (b) is adapted with permission from Ref. [38], 
Copyright 2021 the Author(s). Panel (c) is adapted from Ref. [40], Copyright 2020 by CC BY-NC 4.0 license. Panel (d) is 
adapted with permission from Ref. [42], Copyright 2022 by Elsevier. Panels (e) and (f) are adapted with permission 
from Ref. [43], Copyright 2023 by CC BY-NC 4.0 license.
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2D hinged lattices can be seen as part of an emerging category of 
metamaterials—kirigami metamaterials, for which large deforma
tions of 2D surfaces are programmed by the cuts [60].

4.1 Irregular Kagome Pattern and Topological Polarization 
Transformation. By breaking the symmetry of a regular kagome 
pattern (i.e., distorting equilateral triangles into scalene ones), the 
structure acquires the capacity to be topologically polarized, i.e., to 
push floppy modes from one edge to the other, causing no floppy 
mode at one edge and extra floppy modes at the opposite edge [48]. 
This polarization stems from phonon band topology of the pattern 
and therefore is robust against local geometric perturbations. In an 
irregular arrangement consisting of equilateral and scalene 
triangles, reconfiguring the pattern can toggle the appearance and 
disappearance of polarization, yielding transformable topological 
mechanical metamaterials [48]. Such topological polarization 
transformation can also be realized by combining two different 
scalene triangles [61]. In what follows, we describe the 
equilateral–scalene pattern in detail. As illustrated in Fig. 8(a), 
sweeping the twist angle h applies uniform soft deformation to the 
irregular kagome pattern (or lattice in terms of physics) in its Guest- 
Hutchinson mode [62]. This uniform twisting transforms the pattern 
between polarized states (h2 < h < h4) and nonpolarized states 
(h < h2 or h > h4). The topological polarization RT is a Bravais 

lattice vector that points toward the edge with extra floppy modes, 
expressed by [58,59] 

RT ¼
X

i¼j

njai (14) 

in which ai are primitive vectors (Fig. 8(a), inset). The coefficients nj 

are integer topological invariants of the equilibrium matrix QðkÞ for 
wavenumbers k in the Brillouin zone, where the primitive reciprocal 
vectors bj satisfy ai � bj ¼ 2pdij. Specifically, nj are winding 
numbers of the phase of det½QðkÞ� around the cycles Cj connecting 
k and kþ bj. They are expressed by [58,59] 

nj ¼
1

2p

þ

Cj

dk � rk/ kð Þ (15) 

in which /ðkÞ is the phase of det½QðkÞ�. The winding numbers 
change only when h crosses the topological transitions h2, h3, and 
h4, resulting in distinct polarizations [48] 

RT ¼

a2 − a1, h2 < h < h3

a2, h3 < h < h4

0, h < h2 or h > h4

8
><

>:
(16) 

Fig. 8 Irregular kagome lattice and topological polarization transformation. (a) Soft and hard edge stiffness versus 
the twist angle h of the irregular kagome lattice [48]. Five representative configurations (corresponding to h1 to h5) are 

shown. The twist angles h2, h3, and h4 define the critical configurations with collinear edges (highlighted by parallel 
strips). Across the critical configurations, the polarization vector RT changes discontinuously. In the polarized 
regime (highlighted by shading), RT points from the (bottom horizontal) hard edge to the (top horizontal) soft edge of 
the irregular kagome configurations above the graph. In the nonpolarized regime, RT50. (b) The irregular kagome 
prototype is assembled from plastic “K’NEX” parts [48]. (c) Snapshots of the indentation tests (top) and simulations 
(bottom) of the irregular kagome prototype made of shape memory polymers [64]. (d) Snapshots of the indentation 
tests of the irregular “folded kirigami” kagome lattice (left) and the experimental loading curves (right) [35]. In either 

(c) or (d), the indentation tests at the soft edge and the hard edge for one nonpolarized configuration (h1) and one 
polarized configuration (h3) are illustrated. Panels (a) and (b) are adapted from Ref. [48], Copyright 2017 by CC BY 4.0 
license. Panel (c) is adapted from Ref. [64], Copyright 2023 by CC BY 4.0 license. Panel (d) is adapted with permission 
from Ref. [35], Copyright 2024 by Author(s).
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The polarization vector RT cannot be well-defined at a transition, 
where bulk floppy modes (zero modes) arise. The zero modes are 
directly related to the lattice geometry that features collinear bonds 
(triangle edges). The collinear bonds generally allow states of self- 
stress, and furthermore, induce zero modes via the general Maxwell 
relation [58] 

N0 − Nss ¼ dNs − Nb (17) 

which indicates that the number of zero modes N0 and the number of 
states of self-stress Nss vary synchronously if the number of sites Ns, 
the number of bonds Nb, and the dimension of the lattice d do not 
change. In nonpolarized states, floppy edge modes reside on both 
edges of the lattice. As h sweeps from the nonpolarized regime to the 
polarized regime, the edge modes leave the bottom edge into the 
bulk, substantially increasing the bottom edge stiffness (i.e., the 
curve of hard edge in Fig. 8(a)), and become bulk floppy modes at 
the transitions. In polarized states, the edge modes gather at the edge 
pointed by RT. Notably, at the transition h3, despite the appearance 
of a horizontal line of straight bonds supporting states of self-stress 
and a singular RT, the lattice still supports polarization in the vertical 
direction. This configuration is actually extensively used to produce 
topological polarization, such as in Refs. [35] and [63–65].

For physical realization of the topological polarization transfor
mation, one has to consider the theoretical assumption that the 
triangles are connected by free hinges which facilitate the floppy 
edge modes as well as the uniform twisting in the Guest-Hutchinson 
mode. The original construction is the assembly of plastic modular 
buildings as illustrated in Fig. 8(b). The blue-hinge parts are inserted 
through the black-hinge parts, allowing free rotations between them. 
This assembly shows substantial change in the edge stiffness with 
the uniform twisting [48].

The topological polarization is also pursued with a single piece of 
material under the context of mechanical metamaterials, where 
living hinges take the place of ideal hinges [35,63–65]. The living 
hinges must have sufficiently low rotational stiffness to induce the 
polarization in the small deformation regime. Furthermore, the 
polarization transformation requires even much lower rotational 
stiffness—the hinges should maintain a low stress level after the 
uniform twisting, which involves large bending deformations of the 
hinges. To facilitate the polarization transformation, shape memory 
polymer is used to fabricate mechanical metamaterials of which the 
hinge stresses can be temporally erased (i.e., stress caching) under 
temperature control [64]. Such metamaterials can be stress-free in 
both the polarized and the nonpolarized configurations, avoiding 
stress accumulation in the hinges. As illustrated in Fig. 8(c), the 
shape memory polymer metamaterial exhibits significant edge 
stiffness change from its nonpolarized (i and ii) to its polarized 
configurations (iii and iv), with an agreement between simulation 
and experiment. Specifically, the hinge ligaments are 100 lm wide 
(versus maximum side length of 2.25 mm for the triangles) as an 
optimal compromise between their compliance and strength. Under 
this hinge size, the metamaterial exhibits a stiffness ratio of 2.18 
between the hard and soft edges in the polarized state (h3) and of 1.15 
in the nonpolarized state (h1), showcasing the polarization 
transformation.

Stronger polarization and transformation capability can be 
realized with one piece of paper by harnessing the extreme 
reconfigurability of the folded kirigami [35]. The folding hinges 
are almost ideal so that the reconfiguration of the folded kirigami is 
nearly stress-free. As illustrated in Fig. 8(d), the irregular kagome 
folded kirigami (paper thickness of 0.2 mm versus maximum 
triangle side length of 20 mm) exhibits a stiffness ratio of up to 5 in 
the polarized state (h3) and around 1.2 in the nonpolarized state (h1).

4.2 Square–Rhombus Pattern and Nonreciprocity. The 
Maxwell-Betti theorem indicates the static reciprocity of a linear 
elastic material undergoing infinitesimal strain—the displacement 
at a point (indexed by 2) induced by a force applied at another point 
(indexed by 1) equals the displacement at the point 1 induced by the 

same force applied at the point 2 [66–68]. As illustrated in Fig. 9(a), 
an elementary example of reciprocal systems is a horizontal beam 
subjected to two vertical forces P1 and P2 at point 1 and point 2, 
respectively. We suppose Dij is the displacement at point i induced 
by the force Pj, where i, j ¼ 1, 2. Consider two states I and II of the 
beam. For state I, P1 is applied first followed by P2. In this case, the 
total external work is expressed by 

WI ¼
1

2
P1D11 þ

1

2
P2D22 þ P1D12 (18) 

For state II, P2 is applied first followed by P1. The total external work 
becomes 

WII ¼
1

2
P2D22 þ

1

2
P1D11 þ P2D21 (19) 

Under linear elasticity, the total external work is not affected by the 
order in which the forces are applied, i.e., 

WI ¼ WII (20) 

Substituting Eqs. (18) and (19) into Eq. (20) yields 

P1D12 ¼ P2D21 (21) 

Supposing P1 ¼ P2 ¼ P, we have 

D12 ¼ D21 (22) 

Either Eqs. (21) or (22) expresses the concept of static reciprocity.
While breaking time-reversal symmetry or time-invariance of a 

media can generate nonreciprocity in linear elastic materials, spatial 
asymmetry, and nonlinearity are two necessary ingredients for static 
mechanical nonreciprocity [54]. Kirigami can provide both 
ingredients. Figure 9(b) illustrates a square-rhombus kirigami 
pattern, which is asymmetric regarding the left and right edges, 
quantified by the asymmetry angle h ¼ p=16 [52]. Nonreciprocity 
emerges when a horizontal input force F1 (or F2) is applied on the 
middle point of the left (or right) edge. Under the same magnitude of 
the input force (F1 ¼ F2 ¼ F), the output displacement u21 (or u12) 
on the right (or left) edge is different from each other. This 
discrepancy of “static transmissibility” in the opposite directions 
suggests the nonreciprocity of the kirigami system, expressed by 

u12 6¼ u21 (23) 

As illustrated in Fig. 9(c), substantial nonreciprocity can be detected 
from experiments and simulation, even for small input forces (i.e., 
jFj � 0:2N), indicating the strong nonlinearity of this system. 
Remarkably, the experimental curves from prototypes of different 
materials but the same size (squares of diagonal length 16 mm and 
rhombi of diagonal lengths 16 mm and 8 mm)—the silicon rubber 
(Fig. 9(d)) and the folded kirigami made of paper (Fig. 9(e))— 
approximately agree with each other and also match the simulation 
curve. This consistency highlights that the nonreciprocity of this 
kirigami system is controlled by its geometry, instead of the 
constituent materials. As motivated above, lack of reciprocity has 
the potential to be used as a design criterion in (quasi-)static 
mechanical systems and in other fields such as dynamics (non
reciprocity breaks the invariance when source and receiver are 
swapped), acoustics, and optics [69].

4.3 Rotating-Rectangle Pattern and Poisson’s Ratio.  
Besides the emerging metamaterial functionalities such as the 
transformable polarization and the static nonreciprocity, kirigami is 
also employed to understand and design materials with negative 
Poisson’s ratio [70]. Two typical examples include the kagome 
pattern [71] and the rotating-square pattern [10], while more 
complex hybrid patterns can also be created [72]. For these kirigami 
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patterns, the Poisson’s ratio is governed purely by the geometry of 
their configurations. Here, we illustrate this phenomenon using the 
rotating-rectangle pattern (Fig. 10(a)) [73], which generalizes the 
classical rotating-square pattern. The rotating-rectangle patterns are 
composed of rectangles of side lengths a and b, and their 

deformations are parameterized by a rotation angle h. Extracting a 
unit cell of four rectangles, one obtains a circumscribed rectangle of 
side lengths X1 and X2. To calculate the Poisson’s ratio, one chooses 
a suitable strain measure, among various strain definitions such as 
the engineering strain, the infinitesimal strain, and the logarithmic 

Fig. 10 Poisson’s ratio m versus the rotation angle h of rotating-rectangle kirigami [73]. The constituent rectangles 
have side lengths a and b. Four rectangles form a unit cell circumscribed within a large rectangle of side lengths X1 

and X2. (a) Curves for patterns with a>b. Each vertical dashed line corresponds to a critical angle h0, which satisfies 
a=b 5 tanðh0=2Þ. The horizontal solid line (m 5 21) corresponds to the degenerate (rotating-square) pattern with a 5 b. 
(b) Curves for two equivalent patterns under different parameterizations (a > b and a0 < b0). The parameters satisfy the 

following relationships: a05 b, b05 a, and h01h 5 180 deg.

Fig. 9 Static nonreciprocity of the square-rhombus kirigami. (a) Concept of reciprocity is exemplified with a 
horizontal beam under vertical loadings. The force Pj is applied at the point j, causing the displacement Dij at the 
point i (i, j 5 1, 2). In state I, P1 is applied first, followed by P2, resulting in the total external work WI . In state II, P2 is 
applied first, followed by P1, resulting in the total external work WII . If the deformations are small, we have the 
reciprocal relationship P1D12 5 P2D21, which becomes D12 5 D21 when P1 5 P2 5P. (b) The square-rhombus kirigami 

is nonreciprocal under the asymmetric angle h 5 p=16 [52]. The force Fj is applied at the point j, causing the 
displacement uij at the point i (i, j 5 1, 2). The response is substantially nonlinear even for relatively small (but not too 
close to zero) input forces. Thus, we have the nonreciprocal relationship F1u12 6¼ F2u21, which becomes u12 6¼ u21 

when F1 5 F2 5 F . (c) The nonreciprocity descriptor u122u21 versus the input force F1 5 F2 5 F [35,52]. The 
experimental curves are from the mechanical tests of (d) the silicon rubber prototype [52] and (e) the folded kirigami 
prototype [35]. Panel (d) is adapted with permission from Ref. [52], Copyright 2017 by Springer Nature. Panel (e) is 

adapted with permission from Ref. [35], Copyright 2024 by the Author(s).
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strain. While all these strain forms have their advantages and 
disadvantages in describing the deformations of a rotating-rectangle 
pattern [74], the infinitesimal strain—expressed by dX1=X1 and 
dX2=X2 for the two orthogonal directions 1 and 2, respectively—is 
more intrinsic because it does not rely on selecting a specific 
undeformed configuration. If the loading is applied in the direction 
2, then the Poisson’s ratio is expressed by [73] 

� ¼ − dX1=X1

dX2=X2

¼
a2 sin 2 h=2ð Þ− b2 cos 2 h=2ð Þ

a2 cos 2 h=2ð Þ− b2 sin 2 h=2ð Þ
(24) 

For a ¼ b, Eq. (24) indicates a constant Poisson’s ratio � ¼ −1, 
which is corresponding to the rotating-square pattern. For a 6¼ b, � is 
singular when the rotation angle h equals 

h0 ¼ 2 arctan
a

b

� �

(25) 

As illustrated in Fig. 10(b), a rotating-rectangle pattern with a0 > b0

is equivalent to a rotating-rectangle pattern with a < b, under the 
relationships a0 ¼ b, b0 ¼ a, and h0 þ h ¼ 180 deg. Therefore, only 
one case, say a < b, needs to be analyzed. Figure 10(a) shows that 
each curve of � versus h has two branches, separated by the vertical 
asymptote line h ¼ h0 and the horizontal line � ¼ −1. Equation (25) 
indicates h0 < 90� for a < b. on the left-hand side of the asymptote 
line (h < h0), the Poisson’s ratio satisfies � < −1. As illustrated by 
the case of a < b in Fig. 10(b), the singularity at the asymptote line 
arises because when h ¼ h0, the rectangle diagonals are collinear in 
the direction 2, resulting in dX2 ¼ 0. In addition, when the rotation 
angle h equals 

h00 ¼ 180� − h0 ¼ 2 arctan
b

a

� �

(26) 

the rectangle diagonals are collinear in the direction 1 (the case of 
a < b in Fig. 10(b)). Therefore, we have dX1 ¼ 0 and consequently 
� ¼ 0 for h ¼ h00. on the right-hand side of this point (h > h00), the 
Poisson’s ratio satisfies − 1 < � < 0, while on the left 
(h0 < h < h00), we have � > 0. Desired values of the Poisson’s ratio 
can be obtained by selecting rotating-rectangle patterns with proper 
side lengths a and b and rotation angle h.

By integrating rotating-square mechanisms with chiral origami 
modules, 3D metamaterials can undergo large, multimodal 
deformations that synchronize twisting and translation [75]. Since 
standard rotating-square patterns have a constant Poisson’s ratio, 
then generalized rotating-rectangle patterns may broaden the 
deformation modes of these 3D metamaterials with the feature of 
a tunable Poisson’s ratio.

5 Summary

This paper has focused on the underlying mechanism that 
transforms geometric characteristics of kirigami surfaces to their 
unique mechanical properties. The applications and challenges of 
kirigami engineering have been summarized in two recent reviews 
[76,77].1 Their applications spread from flexible electronics to soft 
robotics, and from medical devices to energy and environmental 
devices. Their challenges include fabricating complex prototypes on 
small and large scales, balancing functional flexibility and structural 
integrity, and tailoring dynamics properties. We envision a couple of 
important directions for kirigami engineering regarding the inter
play of geometry and mechanics: first, the theory of pattern design 
and deformation description of kirigami surfaces in general non- 
Euclidean space with varying curvatures; second, the fabrication 
strategy of kirigami surfaces with a proper material selection that 

minimizes the influence of local constituent material properties on 
the global mechanical responses predicted by the geometric 
analysis. Kirigami expands the design space and offers an effective 
toolkit for engineering and scientific applications involving the 
interplay of geometry and mechanics. It allows creative designs that 
are not only aesthetically compelling but also mechanically 
ingenious.
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