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Abstract This paper presents a solution of the elastic fields of a half-plane composite structure containing
distributed multiple circular inhomogeneities under boundary loading. The solution is obtained with a semi-
analytical approach by combining the Green’s function and the equivalent inclusion method. This approach
can achieve high accuracy and can be easily implemented with less computational effort compared with other
numerical methods. Then, this solution is further used to explore the boundary effects on the elastic fields
and effective elastic properties of the half-plane composite structure containing square periodically distributed
circular inhomogeneities. Influences of the boundary and the inhomogeneity volume fraction on the elastic
fields are examined in detail. Local effective elastic constants of the composite structure are predicted using the
unit cells. The results show that the boundary has a significant effect on the elastic fields and elastic properties of
the half-plane composite structure. The average displacement predicted with the conventional effective elastic
constants of unit cells may deviate from the real value. Thus, we propose a design of a composite structure
with a uniform elastic constant and develop an analytical model to calculate the average displacement.

1 Introduction

The elastic fields in a composite containing various shapes of discrete inhomogeneities are essential for
analyzing the damage initiation and predicting the overall properties of the composite. In a composite structure
of finite size, some inhomogeneities are inevitably located near the boundary, which will influence the elastic
fields and local elastic properties, compared with the case of infinite size. Therefore, it is of importance to
understand the boundary effect on the elastic fields of a composite structure containing inhomogeneities in
fundamental research and engineering applications.

The problem of a single circular inclusion or inhomogeneity1 in an elastic half-plane region has been
investigated by several researchers. Richardson [2] gave the stresses in a half-plane containing a perfectly
bonded inclusion undergoing an expansion, by using Muskhelishvili’s complex variable method. Saleme [3]
studied the problem of a half-plane with a perfectly bonded circular inhomogeneity under a uniform tension

1 Following Eshelby [1], an inclusion refers to an embedded region that has the same elastic properties as the surrounding
matrix but may be subjected to an eigenstrain, whereas an inhomogeneity refers to an embedded region that has different elastic
properties from the surrounding matrix.
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at infinity parallel to the free boundary. However, Shioya [4] pointed out that Saleme’s solution leaves out
the rigid-body displacement of the inhomogeneity and thus does not satisfy the force equilibrium condition
on the symmetrical axis. Shioya [4] gave the solution of the same problem by using a perturbation method
to determine the unknown coefficients in Airy’s stress function in bipolar coordinates. Lee et al. [5] gave the
elastic fields of a half-plane containing a circular inhomogeneity with a pure sliding interface under either
a uniform uniaxial loading at infinity parallel to the free boundary or a uniform non-shear-type eigenstrain,
by using Papkovich–Neuber displacement potentials in an infinite integral form and infinite series in polar
coordinates. Al-Ostaz et al. [6] extended the results of Lee et al. [5] to the cases when the boundary of the half-
plane is either fixed or free to move in the tangential direction. Furuhashi et al. [7] studied sliding inclusions
and inhomogeneities with frictional interfaces. Ru [8,9], Sun and Peng [10], and Zou and Lee [11] investigated
Eshelby’s problems of a half-plane with an inclusion of arbitrary shape.

The problem of multiple inhomogeneities in an elastic half-plane region has been attracting considerable
attention during the past decades. Dong et al. [12] compared the stresses of a half-plane containing two perfectly
bonded circular inhomogeneities subject to a uniform remote loading parallel to the free boundary and a normal
surface loading, obtained by the boundary integral equation method (BEM), the displacement domain integral
equation (DDIE) approach, and the strain domain integral equation (SDIE) approach. It was shown that the
BEM and the SDIE produce more reasonable results of the stresses than the DDIE. Legros et al. [13] used a
boundary integral equation method to calculate the elastic fields of a half-plane containing a large number of
randomly distributed perfectly bonded circular inhomogeneities under a uniform remote loading parallel to the
free boundary. Lee et al. [14] used the volume integral equation method to calculate the stresses of a half-plane
containing squarely or hexagonally distributed perfectly bonded circular inhomogeneities under a uniform
remote loading parallel to the free boundary. Kushch et al. [15] combined Muskhelishvili’s complex variable
methodwith the Fourier integral transform technique and obtained the stresses of a half-plane containing a finite
array of perfectly bonded elliptic inhomogeneities under a uniform remote tension parallel to the boundary
and a prescribed normal traction on the boundary.

Apart from the methods used in the above studies, inhomogeneity problems can also be solved by the
equivalent inclusion method. For one ellipsoidal inhomogeneity embedded in an infinite solid under an applied
remote strain field, Eshelby [1,16] originally proposed the elastic solution through replacing the inhomogeneity
with an inclusion and applying a specific eigenstrain to the inclusion to meet the equivalence of stress/strain
field, which has been referred to as the equivalent inclusionmethod (EIM). Eshelby’s EIM has been extensively
used to investigate the mechanical properties of composite materials [17–30], nanomaterials [31–33], metallic
polycrystals [34], and piezoelectric crystals [35].

The EIM is originally developed for the case of an infinite solid, in which both the elastic stress/strain
field and the equivalent eigenstrain are uniform inside the inhomogeneity. However, when an inhomogeneity
is close to a boundary or is subjected to a non-uniform stress field, the equivalent eigenstrain is generally no
longer uniform, but the equivalent inclusion method can be extended to cases of non-uniform fields [36].

Recently, Liu et al. [37] investigated the boundary effects on the elastic fields and the effective elastic
constants of a half-space composite containing spherical inhomogeneities by combining the EIM and the
Green’s function of a half-space, and their results exhibit high accuracy and good capability. The effective
elastic constants of composites are usually predicted using representative volume elements or unit cells of a
periodic composite structure. However, under a specified boundary condition, the effective elastic property
calculatedwith a unit cell close to the boundary region is different from that calculatedwith a unit cell away from
the boundary. This “boundary effect” on the stress/strain field and effective elastic properties of composites
has been attracting much attention in the micro-mechanics of composites [38–40]. For a composite material,
the boundary effect on its effective elastic constants may be avoided by using the embedded cell approach,
as in the work of Trias et al. [39] and Harper et al. [40]. However, for a composite structure with a finite size
or boundaries, its overall response and the local stress field under loading will be inevitably affected by the
boundary. In this regard, the results of Liu et al. [37] reveal that the boundary has significant effects on the
local stress field and the effective elastic constants of a half-space composite structure containing spherical
inhomogeneities.

In thiswork, using the equivalent inclusionmethod,we compute the stress fields, effective elastic properties,
and the average displacement of a half-plane composite structure containing periodically distributed multiple
circular inhomogeneities. Compared with the three-dimensional case studied by Liu et al. [37], the solution
of the two-dimensional structure faces a strong technical challenge since the Green’s function is much more
complicated than the three-dimensional one and requires different integration strategies.Moreover, we propose
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Fig. 1 A half-plane domain S (x2 ≥ 0) loaded by a concentrated force F at ξ

a novel analytical model to calculate the overall displacement of the composite structure and compare the
computed displacement with the equivalent inclusion method and the finite element method (FEM).

2 Formulation

2.1 Green’s function in an isotropic half-plane

Consider a semi-infinite homogeneous isotropic half-plane medium with a traction-free boundary in Fig. 1.
The shear modulus and Poisson’s ratio of the medium are denoted by μ and ν, respectively. The Cartesian
coordinate system O−x1x2 is set up with the origin on the boundary x2 = 0. A concentrated force F is applied
in the interior of the half-plane at ξ = (ξ1, ξ2) with ξ2 ≥ 0. The Green’s function Gi j (x, ξ) is defined as
the displacement component in the xi -direction at point x when a unit concentrated force is applied in the
x j -direction at point ξ . By this definition, the displacement at x can be written in terms of the Green’s function
as

ui (x) = Gi j (x, ξ)Fj . (1)

Here, and in the following, repeated indices obey theEinstein summation conventionunless otherwise indicated.
For convenience of expression, the vector from ξ to x is denoted as r = x − ξ , and the vector from ξ to x is
denoted by r = x− ξ , where ξ is the mirror image of point ξ with respect to the boundary x2 = 0. Then, if the
medium is in the state of plane strain, based on Bekya-Mycxejinillbnjin’s particular solution and Papkovich–
Neuber’s general solution of plane elastic problems [41,42], the explicit forms of the Green’s function can be
expressed as

KdG11 = −ν1 ln r − ν3 ln r + r21
r2

+ ν1
r21
r2

+ 2ξ2x2
r2

− 4ξ2x2r21
r4

,

KdG22 = −ν1 ln r − ν3 ln r + r22
r2

+ ν1
r22
r2

− 2ξ2x2
r2

+ 4ξ2x2r22
r4

,

KdG21 = −r1r2
r2

− ν1
r1r2
r2

− ν2 arctan
r1
r2

+ 4ξ2x2r1r2
r4

,

KdG12 = −r1r2
r2

− ν1
r1r2
r2

+ ν2 arctan
r1
r2

− 4ξ2x2r1r2
r4

,

(2)

where Kd = 8πμ(1− ν), ν1 = 3− 4ν, ν2 = 4(1− ν)(1− 2ν), ν3 = 1+ ν2, r1 = x1 − ξ1, r2 = x2 − ξ2, r =√
r21 + r22 , r1 = r1 = x1 − ξ1, r2 = x2 + ξ2, r =

√
r21 + r22. For simplicity in the following derivation, the

relations in Eq. (2) are rewritten in a unified form

KdGi j = − (ν1 ln r + ν3 ln r)δi j + rir j
r2

(2δi j − 1) + ν1
r ir jδi j − rir j (1 − δi j )

r2

+ 2ξ2x2
r4

[
δi j r

2 − 2r ir j (2δi j − 1)
]
(1 − 2δ2 j ) − ν2 arctan

r1
r2

(δ1 jδ2i − δ1iδ2 j ),

(3)

where i, j = 1, 2. Note that though δi j is the Kronecker delta, repeated indices i and j in Eq. (3) do not obey
the summation convention. The Green’s function for the plane stress condition can be obtained by replacing
E with E(1 + 2ν)/(1 + ν)2 and ν with ν/(1 + ν), respectively.
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Fig. 2 A half-plane domain S (x2 ≥ 0) containing a circular inclusion Ω located at ξ c

2.2 One circular inclusion in a half-plane

As we are going to use the equivalent inclusion method, we first recapitulate the basic equations for a circular
inclusion that is subjected to an eigenstrain, shown in Fig. 2. Note that the eigenstrain does not exist outside
the inclusion, i.e. ε∗

i j (ξ) = 0 when ξ ∈ S\Ω . The total strain is the sum of the elastic strain and the eigenstrain.
The constitutive relation of the linear elastic medium can be rewritten as

σi j = Ci jkl(uk,l − ε∗
kl). (4)

Substituting Eq. (4) into the equilibrium equation leads to

Ci jkluk,l j = Ci jklε
∗
kl, j , (5)

where Ci jkl is the stiffness tensor of the matrix. Equation (5) implies that, in the sense of external loading, the
effect of an eigenstrain is equivalent to an applied body force. Consequently, the displacement can be written
in terms of the eigenstrain as

ui (x) = −
∫

S
Gi j (x, ξ)C jkmn

∂ε∗
mn(ξ)

∂ξk
dSξ . (6)

Using Gauss’s theorem, Eq. (6) can be rewritten as

ui (x) =
∫

Ω

∂Gi j (x, ξ)

∂ξk
C jkmnε

∗
mn(ξ)dSξ . (7)

For simplicity in expression, we define

Γimn(x, ξ) = −∂Gim(x, ξ)

∂ξn
(8)

and substitute it into Eq. (7), and then the displacement becomes

ui (x) = −
∫

Ω

ΓimnCmnklε
∗
kldSξ , (9)

where detailed expression of Γimn(x, ξ) is given in the Appendix.
The eigenstrain ε∗

i j (x)which will be used to depict the effect of an inhomogeneity in the following sections
is generally non-uniform over Ω , and can be expressed as the Taylor expansion of x−ξ c, where ξ c is the
position vector of the inclusion’s centre. For simplicity and efficiency of calculation, only constant, linear, and
quadratic terms are considered in this paper, i.e.,

ε∗
i j (x) = E0

i j + E1
i jk(xk − ξ ck ) + E2

i jkl(xk − ξ ck )(xl − ξ cl ), x ∈ Ω, (10)

where E0
i j , E

1
i jk , and E2

i jkl are coefficients of constant, linear, and quadratic terms of (xs − ξ cs ), respectively.
In Sect. 3 we will demonstrate that the approximation of the eigenstrains up to quadratic terms has adequate
accuracy in most cases. Substituting Eq. (10) into Eq. (9) and then integrating the function, one can obtain

ui (x) = −
∫

Ω

ΓimnCmnkl

[
E0
kl + E1

klp

(
ξp − ξ cp

)
+ E2

klpq

(
ξp − ξ cp

) (
ξq − ξ cq

)]
dSξ

= − 1

Kd

[
M0

i jk(x, ξ c)C jkmnE
0
mn + N 1

i jkp(x, ξ c)C jkmnE
1
mnp + T 2

i jkpq(x, ξ c)C jkmnE
2
mnpq

]
,

(11)
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(a) (b)

Fig. 3 The equivalent inclusion method: a a circular inhomogeneity, and b an equivalent circular inclusion with an eigenstrain
ε∗
i j

in which the explicit forms of M0
i jk(x, ξ c), N 1

i jkp(x, ξ c), and T 2
i jkpq(x, ξ c) are given in the Appendix. Using

the above displacement and geometric equation, the strain can be written as

εi j (x) = − 1

Kd

[
D0
i jkl(x, ξ c)CklmnE

0
mn + D1

i jklp(x, ξ c)CklmnE
1
mnp + D2

i jklpq(x, ξ c)CklmnE
2
mnpq

]
, (12)

where D0
i jkl(x, ξ c), D1

i jklp(x, ξ c), and D2
i jklpq(x, ξ c) are

D0
i jkl = M0

ikl, j + M0
jkl,i

2
, D1

i jklp = N 1
iklp, j + N 1

jklp,i

2
, D2

i jklpq = T 2
iklpq, j + T 2

jklpq,i

2
. (13)

Once the strain field is solved, the stress field can be obtained from the constitutive relation.

2.3 One circular inhomogeneity in a half-plane

Next, we apply the equivalent inclusion method to the elastic field of the inhomogeneity problem shown in
Fig. 3a, where a circular inhomogeneity with the stiffness C1

i jkl is embedded in a half-plane medium with the

stiffness Ci jkl , and the half-plane region is subjected to a uniform boundary stress σ 0
i j . In terms of the elastic

fields, this problem is equivalent to the configuration in Fig. 3b, where the inhomogeneity is replaced with an
inclusion, which has the same elastic stiffness Ci jkl as the matrix, but is given an unknown and distributed
eigenstrain ε∗

i j (x). Thus, the so-called equivalent condition is

Ci jkl
[
ε0kl + ε′

kl(x) − ε∗
kl(x)

] = C1
i jkl

[
ε0kl + ε′

kl(x)
]
, x ∈ �, (14)

which can be rewritten as

�Ci jkl
(
ε0kl + ε′

kl

) = −Ci jklε
∗
kl , x ∈ �, (15)

where�Ci jkl = C1
i jkl −Ci jkl , ε0kl is the uniform strain caused by the applied stress σ 0

i j , and ε′
kl is the disturbed

strain caused by the eigenstrain ε∗
kl .

The disturbed strain ε′
i j has been given in Eq. (12). Using the Taylor’s expansion and retaining up to

quadratic terms of
(
xs − ξ cs

)
, the disturbed strain can be written as

ε′
i j (x) = − 1

Kd

[
D0
i jkl(ξ

c)Cklmn E
0
mn + D1

i jklp(ξ
c)Cklmn E

1
mnp + D2

i jklpq (ξ
c)Cklmn E

2
mnpq

]

− 1

Kd

[
D0
i jkl,s(ξ

c)Cklmn E
0
mn + D1

i jklp,s(ξ
c)Cklmn E

1
mnp + D2

i jklpq,s(ξ
c)Cklmn E

2
mnpq

] (
xs − ξ cs

)

− 1

2Kd

[
D0
i jkl,st (ξ

c)Cklmn E
0
mn + D1

i jklp,st (ξ
c)Cklmn E

1
mnp + D2

i jklpq,st (ξ
c)Cklmn E

2
mnpq

] (
xs − ξ cs

) (
xt − ξ ct

)
.

(16)
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Substituting Eq. (16) into Eq. (15) and matching the constant, linear, and quadratic terms of xs − ξ cs on the
two sides of the equation, an equation system is obtained as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ [
�Ci jkl D

0
klst (ξ

c)Cstmn − KdCi jmn
]
E0
mn

+ �Ci jkl D
1
klstp(ξ

c)CstmnE
1
mnp + �Ci jkl D

2
klstpq(ξ

c)CstmnE
2
mnpq

]
= Kd�Ci jklε

0
kl

⎡
⎣

[
�Ci jkl D

1
klstp,x (ξ

c)Cstmn − KdCi jmnδpx

]
E1
mnp

+ �Ci jkl D
0
klst,x (ξ

c)CstmnE
0
mn + �Ci jkl D

2
klstpq,x (ξ

c)CstmnE
2
mnpq

⎤
⎦ = 0

⎡
⎣

[
�Ci jkl D

2
klstpq,xy(ξ

c)Cstmn − 2KdCi jmnδpxδqy

]
E2
mnpq

+ �Ci jkl D
0
klst,xy(ξ

c)CstmnE
0
mn + �Ci jkl D

1
klstp,xy(ξ

c)CstmnE
1
mnp

⎤
⎦ = 0

(17)

Solving this equation systemwith 18 independent unknown eigenstrain coefficients E0
mn, E

1
mnp, and E

2
mnpq ,

one can compute the disturbed displacement and strain field using Eqs. (11) and (12), respectively. The total
strain is the superposition of the uniform strain and disturbed strain and so is the total displacement. The total
stress can be calculated from the constitutive relation.

2.4 Multiple circular inhomogeneities in a half-plane

The above formulation for a single inhomogeneity can be readily extended to solve the problem of multiple
inhomogeneities. Consider a half-plane region containing N inhomogeneities, which can have different sizes
and different elastic properties. And the half-plane is subjected to a uniform boundary stress σ 0

i j , as in the case

of one inhomogeneity. Denote the centre of each inhomogeneity, say Ω I , as ξ I = (ξ I
1 , ξ I

2 ), I = 1, 2, . . . , N .
The elastic moduli of the matrix and the N inhomogeneities are denoted as Ci jkl and C I

i jkl , respectively.
Based on the EIM, the equivalent eigenstrain in each equivalent inclusion can be approximated by a

polynomial up to certain order, e.g. the second order,

ε
∗,I
i j (x) = E0,I

i j + E1,I
i jk (xk − ξ I

k ) + E2,I
i jkl(xk − ξ I

k )(xl − ξ I
l ), x ∈ Ω I , (18)

where I = 1, 2, . . . , N , and the repeated superscript I does not imply summation. The disturbed displace-
ment of any point in the half-plane is caused by the eigenstrain of all inclusions, which can be obtained by
superposition as follows:

u′
i (x) = − 1

Kd

N∑
I=1

[
M0,I
i jk (x, ξ I )C jkmn E

0,I
mn + N1,I

i jkp(x, ξ I )C jkmn E
1,I
mnp + T 2,I

i jkpq (x, ξ I )C jkmn E
2,I
mnpq

]
. (19)

The disturbed strain can be obtained in the same way

ε′
i j (x) = − 1

Kd

N∑
I=1

[
D0,I
i jkl (x, ξ I )Cklmn E

0,I
mn + D1,I

i jklp(x, ξ I )Cklmn E
1,I
mnp + D2,I

i jklpq (x, ξ I )Cklmn E
2,I
mnpq

]
. (20)

The equivalent condition for each inhomogeneity becomes

�C J
i jkl

[
ε0kl + ε′

kl(x)
] = −Ci jklε

∗,J
kl (x), x ∈ Ω J , (21)

where J = 1, 2, . . . , N , �C J
i jkl = C J

i jkl − Ci jkl . Expanding the disturbed strain on Ω J as in Eq. (16),

substituting it into Eq. (21), and comparing the coefficients of (xk − ξ J
k ) for different orders, one can obtain

the following linear equation system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

−KdCi jmn E
0,J
mn +

N∑
I=1

�C J
i jkl D

0,I
klst (ξ

J , ξ I )CstmnE
0,I
mn

+
N∑
I=1

�C J
i jkl D

1,I
klstp(ξ

J , ξ I )CstmnE
1,I
mnp +

N∑
I=1

�C J
i jkl D

2,I
klstpq(ξ

J , ξ I )CstmnE
2,I
mnpq

⎤
⎥⎥⎥⎥⎥⎦

= Kd�C J
i jklε

0
kl

⎡
⎢⎢⎢⎢⎢⎣

−KdCi jmnδpx E
1,J
mnp +

N∑
I=1

�C J
i jkl D

0,I
klst,x (ξ

J , ξ I )CstmnE
0,I
mn

+
N∑
I=1

�C J
i jkl D

1,I
klstp,x (ξ

J , ξ I )CstmnE
1,I
mnp +

N∑
I=1

�C J
i jkl D

2,I
klstpq,x (ξ

J , ξ I )CstmnE
2,I
mnpq

⎤
⎥⎥⎥⎥⎥⎦

= 0

⎡
⎢⎢⎢⎢⎢⎣

− 2KdCi jmnδpxδqy E
2,J
mnpq +

N∑
I=1

�C J
i jkl D

0,I
klst,xy(ξ

J , ξ I )CstmnE
0,I
mn

+
N∑
I=1

�C J
i jkl D

1,I
klstp,xy(ξ

J , ξ I )CstmnE
1,I
mnp +

N∑
I=1

�C J
i jkl D

2,I
klstpq,xy(ξ

J , ξ I )CstmnE
2.I
mnpq

⎤
⎥⎥⎥⎥⎥⎦

= 0

(22)

where J = 1, 2, . . . , N . Owing to the symmetry, there are total 18 independent unknown coefficients E0,J
mn ,

E1,J
mnp, and E

2,J
mnpq for each inhomogeneityΩ J when quadratic terms are considered. Correspondingly, there are

total 18 independent equations for each inhomogeneity. Gathering the equations from all the inhomogeneities,
a global equation system is obtained. Solving this global equation system, all the coefficients in the eigenstrain
can be determined, with which one can compute the disturbed displacement and strain field using Eqs. (19)
and (20), respectively. The total strain and displacement can be obtained by superposition, and the total stress
can be calculated from the constitutive relation, as in the case of one inhomogeneity.

In the numerical implementation of this solution, for each inhomogeneitywith uniform, linear, and quadratic
terms of eigenstrain distributions, only three, nine, and eighteen degrees of freedom are needed, respectively. If
quadratic forms of eigenstrain are considered, to solve the elastic fields of a structure with N inhomogeneities,
we only need to calculate 18N unknowns in the linear equation system; however, generally, hundreds of
thousands of degrees of freedom are needed for the FEM simulation of a large enough domain with many
inhomogeneities. Therefore, for the considered composite structure, the EIM has high efficiency in computing
the elastic fields compared with the FEM. Besides computation efficiency, another advantage of the EIM is that
it does not need meshing. As a result, it is very easy to change parameters from case to case, such as different
inhomogeneity radii and centre–centre distances, without re-modelling or re-meshing, which provides great
convenience for programming.

3 Solutions of one and two inhomogeneities

In the following, we will test the accuracy of the EIM-based semi-analytical formulation presented in Sect. 2
with the problems of one and two inhomogeneities. The results will be compared with those obtained using
the FEM. Recall that eigenstrains have been expanded in a polynomial form in Eq. (18). Higher accuracy of
the elastic fields is usually expected when higher-order terms of the eigenstrains are retained. We will perform
an asymptotic analysis by increasing the order of the eigenstrain expansion from constant to quadratic terms.
Although our approach allows the material properties of the inhomogeneities to be different, for simplicity,
we will take them as the same in the following numerical examples.

We normalize all length scales with the radius of the circular inhomogeneity so that the radius is always
set to be 1. Consider an aluminium particle with radius a = 1 embedded at (0, h) in a half-plane domain
(x2 > 0) of high-density polyethylene (HDPE). The Young’s moduli and Poisson’s ratios of aluminium and
HDPE are E f = 69 GPa, ν f = 0.334 and Em = 0.8 GPa, νm = 0.38, respectively. The structure is assumed
to be in a plane strain state (i.e. ε33 = 0, the same below), under a uniform boundary compressive stress
σ 0
22 = − 0.8 MPa.
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Fig. 4 Variation of stress σ22(0, x2) with x2

Fig. 5 Variation of stress σ12(0, x2) with x2

Figure 4 illustrates the variation of stress σ22 along axis x2, when h = 2.0a. One can observe a clear
difference between the results of the EIM and those of the FEM2 when the eigenstrain is assumed to be
uniformly distributed. When linear terms are considered, the results of the EIM and FEM are much closer;
furthermore, when quadratic terms are introduced, the EIM results are almost identical to the FEM results.
Then, we can conclude that the results of the EIM converge to the reference solution with increasing expansion
order of the eigenstrain, and that the EIM with quadratic eigenstrain representation is quite accurate for the
present problem. The convergency and accuracy can also be verified in other cases in Figs. 5, 6 and 7. The peak
values of the stress near the inhomogeneity–matrix interface reveals the stress concentration induced by a sharp
variation of materials. To complete the test of the proposed method, a uniform shear stress σ 0

12 = 0.29 MPa
is applied to the above system. Figure 5 illustrates the variation of the shear stress σ12 with axis x2, when
h = 2.0a.

When multiple inhomogeneities are embedded in the HDPE half-plane domain, the elastic fields will
becomemore complicated as a result of both the inhomogeneity–boundary interaction and the inhomogeneity–
inhomogeneity interaction. To just reveal the basic interactions, we consider two inhomogeneities, the relative
positions of which are restricted to top-down and side-by-side configurations.

Consider two top-down inhomogeneities located at (0, h) and (0, h + s), where s is the centre–centre
distance of the two inhomogeneities. The structure is subjected to the uniform boundary compression σ 0

22 =
− 0.8 MPa. The variations of the stress σ22 for the case when h = 2.0a and s = 3.0a obtained by the EIM
and FEM are illustrated in Fig. 6. It can be observed that there are four peaks in the curve, two high ones of

2 A large enough domain (e.g. 20 × 20, compared with the inhomogeneity radius a = 1) is used to represent the infinite
half-plane region in the FEM computation with the software ABAQUS. The 8-node biquadratic plane strain triangular elements
are used in meshing, with the side length of 0.1.
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Fig. 6 Variation of stress σ22(0, x2) with x2

Fig. 7 Variation of stress σ22(x1, 2.0a) with x1

which appear fairly close to each other between these two inhomogeneities. These four peak values clearly
reflect the stress concentrations induced by the material interfaces.

In the side-by-side inhomogeneity case, two aluminium inhomogeneities are located at (−s/2, h) and
(s/2, h), under the stress σ 0

22 = − 0.8 MPa. Figure 7 illustrates the distribution of the stress σ22 with x1 when
h = 2.0a, s = 3.0a. Only the right half of the curve is illustrated considering the symmetry. Two large drops
are observed at the boundary of the inhomogeneity.

4 Properties of a simple square lattice composite structure

4.1 Effective elastic properties

Consider a simple square lattice composite structure illustrated in Fig. 8. Since the distribution of inhomo-
geneities is periodic, the microstructure is divided into square unit cells, each of which containing only one
inhomogeneity. The unit cell is numbered starting from the boundary, that is, the top side of the first unit cell
coincides with the boundary. One can calculate the average stress and strain under boundary compression. The
effective elastic properties can be represented by expressions of the average stress and strain. It is noted that
the composite with the square configuration of inhomogeneities exhibits a cubic symmetry in the xy-plane;
thus, we calculate the three elastic constants, namely the effective Young’s moduli in the principal x-direction
(y-direction), the Poisson’s ratios and shear moduli in the xy-plane.
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Fig. 8 A half-plane composite structure containing square periodically distributed circular inhomogeneities (under compression)

We first consider the case where the side length of unit cells is s = h = 4.0a, and the volume fraction of
the inhomogeneities in the unit cell is

� f = πa2

s2
. (23)

If the volume fraction � f is given, the radius can be expressed as

a = s

√
� f

π
. (24)

The structure is assumed to be in a plane strain state, under a uniform boundary compressive stress σ 0
22 =

− 0.8 MPa.
Since the elastic fields on the line parallel to the boundary will exhibit a periodic pattern with respect to unit

cells, it follows that the inhomogeneities located at the same distance away from the boundary will be subjected
to the same eigenstrain distributions. Recall that the boundary effect will decay along the height direction, as
described in the cases of one and two particles, which indicates that the eigenstrain will converge to a stable
value, when the inhomogeneity is sufficiently far away from the boundary. Then, we can assume that the
eigenstrains of the inhomogeneities in layer n and those in layer n+1 are the same when n is sufficiently large.
The stress results disscussed below indicate that the boundary effect is negligible after n = 8. Furthermore, the
particle interaction decays fast with the increase in particle centre–centre distance. Then, the particle–particle
interaction can be neglected when their distance exceeds a cut-off distance L , e.g. L = 8s. The asymptotic
analysis for the cut-off distance is also provided below.

Based on the above assumptions, taking n = 8 and L = 8s, only 18 × 8 = 144 unknown eigenstrain
coefficients are included if quadratic eigenstrain forms are considered. For each layer, the equivalent stress
formula is built as Eq. (22). Assembling the equations of first eight layers into a global linear equation system,
one can determine eigenstrains of each layer. Then, the local displacement and strain can be obtained. Using
the numerical integration technique, the average stress and strain can be calculated, and the effective material
properties can be predicted. In detail, the constitutive relation in each unit cell of the composite material can
be written as

〈ε11〉I = 〈σ11〉I − ν I
ps〈σ22〉I

E I
ps

, 〈ε22〉I = 〈σ22〉I − ν I
ps〈σ11〉I

E I
ps

, (25)

where the angle brackets indicate averaging on unit cell I , and the subscript ps means a plane strain state.
Thus, the predicted effective Young’s modulus and Poisson’s ratio of unit cell I can be expressed as

E I = E I
ps

(
1 − ν I 2

)
, ν I = ν I

ps

1 + ν I
ps

. (26)

Moreover, a boundary shear stress σ 0
12 = −0.29 MPa is applied to predict the effective shear modulus GI ,

which satisfies the relationship

〈ε12〉I = 〈σ12〉I
2GI

. (27)
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Fig. 9 Variation of stress σ22(0, x2) with x2 (square periodically distributed inhomogeneities, under compression)

Figure 9 illustrates the variations of stress σ22 with the unit cell number for volume fractions 0.1, 0.3, and
0.5 (the radii are 0.357h, 0.618h, and 0.798h, respectively).

The stress patterns in unit cell 1 are quite different from those in the following unit cells. Starting from
unit cell 2, the patterns change little and exhibit periodicity gradually. A small volume fraction permits a fast
convergence of the patterns. The stress patterns barely change after unit cell 1 when � f = 0.1, while the stress
varies periodically after unit cell 6 when � f = 0.5. Furthermore, different volume fractions lead to different
curve shapes. The peak values appear at the top/bottom boundaries of the unit cells when � f = 0.5, but appear
near the inhomogeneity–matrix interfaces when � f = 0.1 and � f = 0.3. The minimum values are observed
at the inhomogeneity centres when � f = 0.3 and � f = 0.5, but at inhomogeneity–matrix interfaces when
� f = 0.1.

The observations reveal an interesting competition mechanism between inhomogeneity–inhomogeneity
interaction, boundary effect, and interface effect. In the case of one single inhomogeneity, the peak value
of stress appears near the inhomogeneity–matrix interface due to stress concentration induced by the sharp
material variation, as shown in Figs. 4 and 5. When there are multiple inhomogeneities and the neighbouring
inhomogeneities are sufficiently close, the interaction can induce a high stress field at the middle point of the
centre–centre line, i.e. the boundaries of the unit cell. For the first-layer inhomogeneities, the stress boundary
condition limits the stress profile near the boundary and therefore limits the concentration at the top of the
inhomogeneity. In summary, for the inhomogeneity near the boundary, the stress field is strongly influenced
by the boundary effect; for the inhomogeneities far away from the boundary, the stress field is dominated by
the material interface when the volume fraction is small, but is affected by the inhomogeneity–inhomogeneity
interaction when the volume fraction is large.

An asymptotic analysis for the cut-off distance is provided in Fig. 10. The stress fields for L = 6s, L = 8s,
and L = 10s are fairly close, which means that the elastic fields converge to a stable state when the cut-off
distance is large enough, and the results of L = 8s are reasonably accurate.

The boundary also affects the effective elastic properties of the unit cells. Figure 11 illustrates the variations
of the effective Young’s moduli, Poisson’s ratios, and shear moduli with unit cell number for the composites
with different volume fractions from 0.1 to 0.6. The effective Young’s moduli of the first unit cell for all the
cases are lower than the following ones. The unit cells except those of the first layer have nearly the same
effective Young’s moduli, although the stresses converge not so fast in Fig. 9, especially for � f = 0.3 and 0.5.
Moreover, a higher volume fraction causes a greater variation of the effective Young’s modulus, which implies
again that the boundary effect is stronger when the volume fraction is higher. Compared to effective Young’s
moduli, there exists a much slighter difference between effective shear moduli of the first unit cell and the
following ones.

At the end of this subsection, we compare effective elastic properties predicted by different methods, as
shown in Fig. 12. The results of the EIM and FEM are fairly close, which are close to those of the dilute
approximation method when the volume fraction is small (� f = 0.2). When the volume fraction is large
(� f = 0.6), the effective Young’s moduli predicted by the EIM and FEM lie between those of the Mori–
Tanaka method [43,44] and the Halpin–Tsai equation [45], and the effective shear moduli lie between the
dilute approximation and the Mori–Tanaka method. However, it should be noted that both the Mori–Tanaka
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Fig. 10 Variation of stress σ22(0, x2) with x2 for different cut-off distances (� f = 0.2)

(a) (b)

(c)

Fig. 11 Variations of effective elastic properties with unit cells: a effective Young’s moduli, b effective Poisson’s ratios, and
c effective shear moduli

method and the Halpin–Tsai equation are for in-plane isotropic cases, but the effective Young’s moduli, shear
moduli, and Poisson’s ratios of the simple square lattice composite are direction dependent and the present
results are valid only for the principal directions, i.e. along the x and y axes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Effective elastic properties predicted by different methods: a effective Young’s moduli for � f = 0.2, b effective Young’s
moduli for � f = 0.6, c effective Poisson’s ratios for � f = 0.2, d effective Poisson’s ratios for � f = 0.6, e effective shear moduli
for � f = 0.2, and f effective shear moduli for � f = 0.6



1542 X. Dang et al.

(a) (b)

(c) (d)

Fig. 13 Effective Young’s moduli optimization: a Heights of unit cells for � f = 0.2, b Effective Young’s moduli of unit cells for
� f = 0.2, c Heights of unit cells for � f = 0.6, and d Effective Young’s moduli of unit cells for � f = 0.6

4.2 Configuration for uniform properties

As another application of the proposed EIM, we apply it to the composite structure in Fig. 8 with the objective
to reduce the differences of the effective Young’s moduli of the unit cells. To this end, the values of the vertical
side length h of the unit cells are taken as design variables. If the horizontal side length and volume fraction
of all unit cells are the same, the variance of the effective Young’s moduli of the unit cells can be defined as a
function of the vertical side lengths of each layer as follows:

VarE(hI ) = 1

P

P∑
I=1

[
E I (hI ) − E ref

]2
, (28)

where E ref is the reference modulus, which is set to the effective Young’s modulus of the unit cells far from
the boundary.

Using the derivative-free optimization technique, we can minimize the value of the objective function
VarE(hI ). Only several layers of unit cells near the boundary need to be included. For instance, take P = 8
and modify h1 to h6, that is, modify the vertical side lengths of the unit cells of the first six layers and keep
those of the following layers unchanged. The heights and effective Young’s moduli of the unit cells before
and after optimization are illustrated in Fig. 13. A uniform distribution of the height of the unit cells produces
non-uniform elastic constants, whereas a non-uniform distribution will generate uniform elastic constants.
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(a)

(b)

Fig. 14 Sandwich model to predict the average displacement: a one row of unit cells and b the sandwich structure

5 An analytical model for the displacement

Conventionally, the overall displacement of a composite structure or composite material under external loading
is calculated by using the applied load and the effective elastic constants. However, the above analyses of the
effective elastic constants calculated using the unit cells demonstrate that the effective elastic constants so
obtained are functions of the positions of the unit cells. This feature means that the composite structure is a sort
of “graded material” from the viewpoint of effective properties, and it also raises the question as to how the
overall displacement of the composite structure under boundary loading should be calculated. In this section,
we propose a simple analytical method to calculate the average displacement of the composite structure in
Fig. 8.

To this end, considering the periodic distribution of the inhomogeneities, we use only one row of unit cells,
as shown in Fig. 14a, to calculate the average displacement ū2, which is defined as

ū2(x2) =
∫ s/2

−s/2
u(x1, x2)dx1. (29)

The values of ū2(x2) can be calculated with the EIM and the numerical integration technique. Moreover, in
order to calculate it more efficiently and compare its value with that of the conventional micro-mechanical
method easily, we propose a simple analytical model to predict the average displacement and compare the
results of different methods. As shown in Fig. 14b, the composite structure with discrete inhomogeneities is
modelled by a sandwich structure with a core of thickness 2a. The Young’s modulus and Poisson’s ratio of the
skin material are the same as those of the matrix Em and νm , respectively. But the core material is different
from both the inhomogeneities and the matrix. The Young’s modulus and Poisson’s ratio of the core and
the inhomogeneities are denoted as E∗, ν∗ and E f , ν f , respectively. E∗ is calculated using the Halpin–Tsai
equation [45]

E∗ = 1 + 2η� f
1 − η� f

Em, η = E f /Em − 1

E f /Em + 2
. (30)

The effective longitudinal Young’s modulus of the sandwich model can be calculated using the conventional
rule of mixture as

Ē = Em(1 − v∗) + E∗v∗, v∗ = a/h = 2
√
� f /π. (31)

Then, the average displacement ū2 can be predicted by the non-local model [46] using the Green’s function
method [47]:

ū∗
2(x2) = σ0

2λ

(
1

Em
− 1

Ē

) (
e−(L−x2)λ − e−(L+x2)λ

)
+ σ0

Ē
x2, (32)
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Fig. 15 Variation of the average displacement ū2(x2) with x2

(a) (b)

Fig. 16 Variation of the average displacement ū2(x2) with x2: a � f = 0.3 and b � f = 0.6

where the parameter λ is given as

λ = 1

h − a

√
3hμm Ē

aEmE∗ (33)

and μm is the shear modulus of the skin, which can be calculated straightly by

μm = Em

2(1 + νm)
. (34)

As shown in Fig. 14, the average displacement at the bottom of unit cell 10 is set to zero as a reference value.
Figure 15 illustrates the prediction of ū2 from the EIM and the sandwich model for different inhomogeneity
volume fractions. We can see that these two methods agree fairly well with each other, but the latter is much
simpler and easy to use. In Fig. 16, we compare the values of the average displacement predicted by the EIM,
the FEM, and the analyticalmodel for � f = 0.3 and � f = 0.6. In these figures, E1 denotes the effectiveYoung’s
modulus of unit cell 1, and E8 represents that of unit cell 8. Lt and Lb represent the average displacements
calculated using E1 and E8, respectively. Generally, E1 and E8 give over-compliant and over-stiff results,
respectively, and the predictions of the EIM and the analytical model lie between them. The results of the FEM
are lower than those of the EIM, which is reasonable because the FEM computation is generally stiffer than
the real structure.
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6 Conclusions

In this work, first, we solve the elastic fields of a half-plane composite structure containing multiple circular
inhomogeneities under external boundary loading using the equivalent inclusionmethod (EIM) and theGreen’s
function. We examine the influences of various factors including the boundary effect, material interface effect,
and inhomogeneity–inhomogeneity interactions on the elastic fields. For all the considered cases, the repre-
sentation of quadratic equivalent eigenstrain can give very accurate results of the elastic fields. Thus, from
a theoretical point of view, the work generalizes the EIM to cases of semi-infinite two-dimensional domains
containing multiple inhomogeneities. From a practical point of view, the equivalent inclusion method can
achieve high accuracy with less computational cost compared with other numerical methods. Second, using
the EIM solution, we calculate the effective elastic constants of the composite structure containing a square
lattice of circular inhomogeneities in terms of the unit cells. The elastic constants so obtained are related to
the layer of unit cells. The effective Young’s modulus is lower at the first unit cell and then increases along
the height direction, which indicates that the boundary can soften the composite structure compared with the
case without considering the boundary effect. Because of the variation of the effective elastic properties, the
predicted overall displacement of the composite structure under boundary loading will depend on the used
elastic constants. Thus, third, we demonstrate that a uniform elastic constants can be obtained by a non-uniform
distribution of the inhomogeneities. Finally, we develop an analytical sandwich model to calculate the average
displacement, and it exhibits an excellent agreement with the EIM method.

Acknowledgements X. Dang, L. J. Wang and J. Wang thank the support of the National Natural Science Foundation of China
under Grant Nos. 11872075 and 11521202.

Appendix

To rewrite Γimn in a simple form, we define some functions as follows:

ϕn(x, ξ) = rn
r2

; ϕ̄n(x, ξ) = r̄n
r̄2

; ϕ̃n(x, ξ) = rn
r̄2

;

ψimn(x, ξ) = rirmrn
r4

; ψ̄imn(x, ξ) = r̄i r̄mr̄n
r̄4

; ψ̃imn(x, ξ) = rirmr̄n
r̄4

;

λ̄n(x, ξ) = ξ2r̄n
r̄4

; θ̄imn(x, ξ) = ξ2r̄i r̄mr̄n
r̄6

; β̄im(x, ξ) = r̄i r̄m
r̄4

; ᾱ(x, ξ) = 1

r̄2
,

(35)

where ri = xi − ξi , r =
√
r21 + r22 , r1 = r1 = x1 − ξ1, r2 = x2 + ξ2, r =

√
r21 + r22, and i,m, n = 1, 2. Then,

the function Γimn is expressed as

KdΓimn = δmn(2δim − 1)ϕi + δin(2δim − 1)ϕm − ν1δimϕn − ν3δimQnϕ̄n

− ν2 (δ2iδ1m − δ1iδ2m) (ϕ̄1δ2n + ϕ̄2δ1n) − ν1 (1 − δim) (δmnϕ̃i + δinϕ̃m)

− 2(2δim − 1)ψimn − 2ν1δimQnψ̄imn + 2ν1 (1 − δim) Qnψ̃imn

− x2Qm
(
4δimQn λ̄n + 2δimδ2nᾱ

) + ν1δimQn (δmnϕ̄i + δinϕ̄m)

− x2Qm(2δim − 1)
(
4δmnQn λ̄i + 4δin Qn λ̄m − 16Qn θ̄imn − 4δ2nβ̄im

)
,

(36)

where i,m, n = 1, 2, and no summation is applied to the subscripts. Kd = 8πμ(1 − ν), ν1 = 3 − 4ν, ν2 =
4(1 − ν)(1 − 2ν), ν3 = 1 + ν2; Q1 = 1, Q2 = −1.

Then, functions M0
i jk , N

1
i jkp, and T 2

i jkpq can be expressed as
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M0
imn =Kd

∫∫

Ω

Γimndξ1dξ2

=δmn(2δim − 1)�i + δin(2δim − 1)�m − ν1δim�n − ν3δimQn�̄n

− ν2 (δ2iδ1m − δ1iδ2m)
(
�̄1δ2n + �̄2δ1n

) + 2ν1 (1 − δim) Qn�̃imn

− 2(2δim − 1)�imn − 2ν1δimQn�̄imn + ν1δimQn
(
δmn�̄i + δin�̄m

)

− x2Qm
(
4δimQn�̄n + 2δimδ2n Ā

) − ν1 (1 − δim)
(
δmn�̃i + δin�̃m

)

− x2Qm(2δim − 1)
(
4δmnQn�̄i + 4δin Qn�̄m − 16Qn�̄imn − 4δ2n B̄im

)
,

(37)

N 1
imnp =Kd

∫∫

Ω

Γimn

(
ξp − ξ cp

)
dξ1dξ2

=δmn(2δim − 1)�i p + δin(2δim − 1)�mp − ν1δim�np − ν3δimQnQp�̄np

− ν2 (δ2iδ1m − δ1iδ2m) Qp
(
�̄1pδ2n + �̄2pδ1n

) + 2ν1 (1 − δim) QnQp�̃imnp

− 2(2δim − 1)�imnp − 2ν1δimQnQp�̄imnp + ν1δimQnQp
(
δmn�̄i p + δin�̄mp

)

− x2QmQp
(
4δimQn�̄np + 2δimδ2n Āp

) − ν1 (1 − δim) Qp

(
δmn�̃i p + δin�̃mp

)

− x2QmQp(2δim − 1)
(
4δmnQn�̄i p + 4δin Qn�̄mp − 16Qn�̄imnp − 4δ2n B̄imp

)
,

(38)

T 2
imnpq =Kd

∫∫

Ω

Γimn

(
ξp − ξ cp

) (
ξq − ξ cq

)
dξ1dξ2

=δmn(2δim − 1)�i pq + δin(2δim − 1)�mpq − ν1δim�npq − ν3δimQnQpQq�̄npq

− ν2 (δ2iδ1m − δ1iδ2m) QpQq
(
�̄1pqδ2n + �̄2pqδ1n

) + 2ν1 (1 − δim) QnQpQq�̃imnpq

− 2(2δim − 1)�imnpq − 2ν1δimQnQpQq�̄imnpq + ν1δimQnQpQq
(
δmn�̄i pq + δin�̄mpq

)

− x2QmQpQq
(
4δimQn�̄npq + 2δimδ2n Āpq

) − ν1 (1 − δim) QpQq

(
δmn�̃i pq + δin�̃mpq

)

− x2QmQpQq(2δim − 1)
(
4δmnQn�̄i pq + 4δin Qn�̄mpq − 16Qn�̄imnpq − 4δ2n B̄impq

)
,

(39)
where Φn, Φnp, and Φnpq denote the integrals of ϕn, ϕn(ξp − ξ cp), and ϕn(ξp − ξ cp)(ξq − ξ cq ), respectively,
over the circular domain located at (ξ c1 , ξ c2 ). The same notations are also applied to other functions in Eq. (35).
These integrals and their derivatives can be calculated analytically.
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